Skip to main content
Log in

Single Crystal Casting with Fluidized Carbon Bed Cooling: A Process Innovation for Quality Improvement and Cost Reduction

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Superalloy gas turbine blades are being produced by investment casting and directional solidification. A new process, Fluidized Carbon Bed Cooling (FCBC), has been developed and is now being optimized in a prototype casting unit with 10 kg pouring weight. In early test runs with still rather simple mold cluster geometries, a reduction of the primary dendrite arm spacing of around 40 pct compared to the standard radiation cooling process (HRS) could be demonstrated. The improvement is mainly attributed to higher temperature gradients driving solidification, made possible by a functioning Dynamic Baffle. Compared to earlier development efforts in the literature, contamination of the melt and damage to the equipment are avoided using carbon-based fluidized bed materials and the so-called “counter pressure concept.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.F. Singer: Materials for advanced power engineering 1994: Part II, D. Coutsouradis, J.H. Davidson, J. Ewald, P. Greenfield, T. Khan, M. Malik, D.B. Meadowcroft, V. Ragis, R.B. Scarlin, F. Schubert, and D.V. Thornton, eds., Kluwer Academic Publishers, 1994, pp. 1707–29.

  2. F. Hugo, H. Mayer, and R.F. Singer: 42nd Annual Technical Meeting/Investment Casting Institute: Atlanta, Georgia, 25–28 September 1994, Inst, Dallas, Tex., 1994.

  3. 3. M. M. Franke, R. M. Hilbinger, A. Lohmüller, and R. F. Singer: J. Mater. Process. Technol., 2013, vol. 213, pp. 2081–88.

    Article  Google Scholar 

  4. 4. J. D. Miller and T. M. Pollock: Metall. Mater. Trans. A, 2014, vol. 45, pp. 411–25.

    Article  Google Scholar 

  5. 5. A. F. Giamei and J. G. Tschinkel: Metall. Trans. A, 1976, vol. 7, pp. 1427–34.

    Article  Google Scholar 

  6. 6. A. J. Elliott, T. M. Pollock, S. Tin, W. T. King, S.-C. Huang, and M. F. X. Gigliotti: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3221–31.

    Article  Google Scholar 

  7. 7. M. Lamm and R.F. Singer: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1177–83.

    Article  Google Scholar 

  8. 8. S. Steuer, P. Villechaise, T. M. Pollock, and J. Cormier: Mater. Sci. Eng., A, 2015, vol. 645, pp. 109–15.

    Article  Google Scholar 

  9. 9. T. M. Pollock and W. H. Murphy: Metall. Mater. Trans. A, 1996, vol. 27, pp. 1081–94.

    Article  Google Scholar 

  10. 10. A. Heckl, S. Neumeier, M. Göken, and R. F. Singer: Mater. Sci. Eng., A, 2011, vol. 528, pp. 3435–44.

    Article  Google Scholar 

  11. 11. R. Rettig, N. C. Ritter, H. E. Helmer, S. Neumeier, and R. F. Singer: Modelling Simul. Mater. Sci. Eng., 2015, vol. 23, p. 35004.

    Article  Google Scholar 

  12. R. Rettig, K. Matuszewski, A. Müller, H.E. Helmer, N.C. Ritter, and R.F. Singer: Superalloys 2016, M.C. Hardy, E.S. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V. Seetharaman, and S. Tin, eds., Wiley, 2016, pp. 35–44.

  13. M. Lamm, A. Volek, O. Lüsebrink, and R.F. Singer: Materials for Advanced Power Engineering 2006: Part I, J. Lecomte-Beckers, M. Carton, F. Schubert, and P.J. Ennis, eds., Forschungszentrum Jülich GmbH, 2006, pp. 334–44.

  14. M.S.A. Karunaratne, D.C. Cox, P. Carter, and R.C. Reed: Superalloys 2000, Ed. by K. Green, T. M. Pollock, and R. Kissinger, TMS, 2000, pp. 263–72.

  15. 15. K. Matuszewski, R. Rettig, H. Matysiak, Z. Peng, I. Povstugar, P. Choi, J. Müller, D. Raabe, E. Spiecker, K. J. Kurzydłowski, and R. F. Singer: Acta Mater., 2015, vol. 95, pp. 274–83.

    Article  Google Scholar 

  16. 16. D. Ma, H. Lu, and A. Bührig-Polaczek: IOP Conf. Ser.: Mater. Sci. Eng., 2012, vol. 27, p. 12036.

    Article  Google Scholar 

  17. M. Konter, E. Kats, and N. Hofmann: Superalloys 2000, K. Green, T.M. Pollock, and R. Kissinger, eds., TMS, 2000, pp. 189–200.

  18. J. Großmann, J. Preuhs, W. Esser, and R. F. Singer: Proceedings of the 1999 International Symposium on Liquid Metal Processing and Casting, A. Mitchell, L. Ridgway, and M. Baldwin, eds., 1999, pp. 31–40.

  19. A. Lohmüller, W. Eßler, J. Großmann, M. Hördler, J. Preuhs, and F.R. Singer: Superalloys 2000, K. Green, T.M. Pollock, and R. Kissinger, eds., TMS, 2000, pp. 181–88.

  20. R. F. Singer, T. Fitzgerald, and P. Krug: WO9605006 - Method and Device for Directionally Solidifying a Melt (1995), WO 9605006 A1 19960222.

  21. 21. W. Kurz and D. F. Fisher: Fundamentals of solidification, Trans Tech Publications, Switzerland, 1984.

    Google Scholar 

  22. P. Krug: Einfluss einer Flüssigmetallkühlung auf die Mikrostruktur gerichtet erstarrter Superlegierungen. Dissertation, Erlangen, 1998.

  23. 23. A. C. Rees, J. F. Davidson, J. S. Dennis, and A. N. Hayhurst: Chem. Eng. Sci., 2005, vol. 60, pp. 1143–53.

    Article  Google Scholar 

  24. L.D. Graham: US6035924 - Method of Casting a Metal Article (1998), US6035924.

  25. 25. R. C. Darton, R. D. LaNauze, J. F. Davidson, and D. Harrison: Trans. Inst. Chem. Eng., 1977, vol. 55, pp. 274–80.

    Google Scholar 

  26. 26. D. Geldart: Powder Technology, 1973, vol. 7, pp. 285–92.

    Article  Google Scholar 

  27. P.N. Quested and J.E. Northwood: US 4573516 - Method and apparatus for casting directionally solidified articles (1983), US 4573516 A 19860304.

  28. Y.G. Nakagawa, Y. Ohotomo, Y. Saiga, and H. Suto: Superalloys 1980, J.K. Tien, eds., American Society for Metals, 1980, pp. 267–74.

  29. L.D. Graham and B.L. Rauguth: EP1153681 - Method and device for casting a metal article using a fluidized bed (2000), EP 1153681 A1 20011114.

  30. O. Molerus: Principles of Flow in Diperse Systems, Chapman & Hall, 1993.

  31. L.D. Graham: US2004173336 - Fluidized bed with baffle (2003), US 2004173336 A1 20040909.

  32. M. Hofmeister, K.E. Wirth, and R.F. Singer: DE102014216766 - Verfahren zur Herstellung eines Gussbauteils (2014), DE102014216766 (A1) — 2016-02-25.

  33. M. Hofmeister and R.F. Singer: DE102014208922 - Verfahren zur Herstellung eines Gussbauteils (2014), DE102014208922 (A1) — 2014-12-11.

  34. M. Gell, D.N. Duhl, and A.F. Giamei: Superalloys 1980, J.K. Tien, eds., American Society for Metals, 1980.

  35. 35. Y. Zhou and A. Volek: Mater. Sci. Eng., A, 2008, vol. 479, pp. 324–32.

    Article  Google Scholar 

  36. 36. S. Tin, T. M. Pollock, and W. Murphy: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1743–53.

    Article  Google Scholar 

  37. 37. P. S. Kotval, J. D. Venables, and R. W. Calder: Metall. Mater. Trans. B, 1972, vol. 3, pp. 457–62.

    Article  Google Scholar 

  38. 38. M. F. Llop, F. Madrid, J. Arnaldos, and J. Casal: Chem. Eng. Sci., 1996, vol. 51, pp. 5149–57.

    Article  Google Scholar 

  39. 39. U. Betz, F. Hugo, and H. Mayer: BICTA Bulletin (British Investment Casting Trade Association), 1996, vol. 23, pp. 7–10.

    Google Scholar 

  40. D.M. Shah and A. Cetel: Superalloys 2000, K. Green, T.M. Pollock, and R. Kissinger, eds., TMS, 2000, pp. 295–304.

  41. 41. H. Jacobi and K. Schwerdtfeger: Metall. Trans. A, 1976, vol. 7, pp. 811–20.

    Article  Google Scholar 

  42. 42. M. Rappaz, C. A. Gandin, J. L. Desbiolles, and P. Thévoz: Metall. Mater. Trans. A, 1996, vol. 27, pp. 695–705.

    Article  Google Scholar 

  43. G. van Rossum: Python 2.7, Python Software Foundation, 2017.

Download references

Acknowledgment

The authors are grateful for financial support from the German Research Foundation (DFG) in the framework of the collaborative research center SFB/Transregio 103 project B1. Professor Jan Sieniawski, Dr. Dariusz Szeliga, Zenon Lipiński, and Grzegorz Jakubowicz from Rzeszów University of Technology (RZUT) in Poland are acknowledged for supplying ceramic molds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hofmeister.

Additional information

Manuscript submitted July 12, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmeister, M., Franke, M.M., Koerner, C. et al. Single Crystal Casting with Fluidized Carbon Bed Cooling: A Process Innovation for Quality Improvement and Cost Reduction. Metall Mater Trans B 48, 3132–3142 (2017). https://doi.org/10.1007/s11663-017-1110-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1110-x

Keywords

Navigation