Skip to main content
Log in

Mechanism of Macrosegregation Formation in Continuous Casting Slab: A Numerical Simulation Study

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Solidified shell bulging is supposed to be the main reason for slab center segregation, while the influence of thermal shrinkage rarely has been considered. In this article, a thermal shrinkage model coupled with the multiphase solidification model is developed to investigate the effect of the thermal shrinkage, solidification shrinkage, grain sedimentation, and thermal flow on solute transport in the continuous casting slab. In this model, the initial equiaxed grains contract freely with the temperature decrease, while the coherent equiaxed grains and columnar phase move directionally toward the slab surface. The results demonstrate that the center positive segregation accompanied by negative segregation in the periphery zone is mainly caused by thermal shrinkage. During the solidification process, liquid phase first transports toward the slab surface to compensate for thermal shrinkage, which is similar to the case considering solidification shrinkage, and then it moves opposite to the slab center near the solidification end. It is attributed to the sharp decrease of center temperature and the intensive contract of solid phase, which cause the enriched liquid to be squeezed out. With the effect of grain sedimentation and thermal flow, the negative segregation at the external arc side (zone A1) and the positive segregation near the columnar-to-equiaxed transition at the inner arc side (position B1) come into being. Besides, it is found that the grain sedimentation and thermal flow only influence solute transport before equiaxed grains impinge with each other, while the solidification and thermal shrinkage still affect solute redistribution in the later stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. 1.K. Singh and B. Basu: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 1069–81.

    Article  Google Scholar 

  2. 2.M.R. Aboutalebi, M. Hasan, and R.I.L. Guthrie: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 731–44.

    Article  Google Scholar 

  3. 3.H.B. Sun and J.Q. Zhang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1133–49.

    Article  Google Scholar 

  4. 4.D.B. Jiang and M.Y. Zhu: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3446–58.

    Article  Google Scholar 

  5. 5.K. Miyazawa and K. Schwerdtfeger: Steel Res. Int., 1981, vol. 52, pp. 415–22.

    Google Scholar 

  6. 6.T. Kajitani, J.M. Drezet, and M. Rappaz: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1479–91.

    Article  Google Scholar 

  7. 7.F. Mayer, M. Wu, and A. Ludwig: Steel Res. Int., 2010, vol. 81, pp. 660–67.

    Article  Google Scholar 

  8. 8.T. Murao, T. Kajitani, H. Yamamura, K. Anzai, K. Oikawa, and T. Sawada: ISIJ Int., 2014, vol. 54, pp. 359–65.

    Article  Google Scholar 

  9. 9.A. Suzuki: Tetsu-to-Hagané, 1974, vol. 60, pp. 774–83.

    Article  Google Scholar 

  10. 10.R.J.A. Janssen, G.C.J. Bart, M.C.M. Cornelissen, and J.M. Rabenberg: Appl. Sci. Res., 1994, vol. 52, pp. 21–35.

    Article  Google Scholar 

  11. 11.G. Lesoult and S. Sella: Solid State Phenom., 1988, vol. 3, pp. 167–78.

    Article  Google Scholar 

  12. 12.A. Ludwig, M. Wu, and A. Kharicha: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 4854–67.

    Article  Google Scholar 

  13. 13.M.C. Flemings: ISIJ Int., 2000, vol. 40, pp. 833–41.

    Article  Google Scholar 

  14. 14.M. Wu, A. Fjeld, and A. Ludwig: Comput. Mater. Sci., 2010, vol. 50, pp. 32–42.

    Article  Google Scholar 

  15. 15.Z. Hou, G. Cheng, F. Jiang, and G. Qian: ISIJ Int., 2013, vol. 53, pp. 655–64.

    Article  Google Scholar 

  16. 16.S. Luo, M.Y. Zhu, and S. Louhenkilpi: ISIJ Int., 2012, vol. 52, pp. 823–30.

    Article  Google Scholar 

  17. 17.M. Wu and A. Ludwig: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1613–31.

    Article  Google Scholar 

  18. 18.A. Ludwig and M. Wu: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3673–83.

    Article  Google Scholar 

  19. 19.I. Farup and A. Mo: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1461–72.

    Article  Google Scholar 

  20. 20.W. Li, H. Shen, and B. Liu: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 787–94.

    Article  Google Scholar 

  21. 21.C.Y. Wang, S. Ahuja, C. Beckermann, and H.C. Groh: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 111–19.

    Article  Google Scholar 

  22. 22.J. Zhang: Liquid Metal Forming Principle, Chemical Industry Press, Beijing, 2011, p. 200.

    Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the financial support from the National Key Research and Development Program of China (Grant No. 2016YFB0300105), National Natural Science Foundation of China (Grant Nos. U1560208 and 51674072), and Outstanding Talent Cultivation Project of Liaoning Province (Grant No. 2014029101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaoyong Zhu.

Additional information

Manuscript submitted May 22, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D., Wang, W., Luo, S. et al. Mechanism of Macrosegregation Formation in Continuous Casting Slab: A Numerical Simulation Study. Metall Mater Trans B 48, 3120–3131 (2017). https://doi.org/10.1007/s11663-017-1104-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1104-8

Keywords

Navigation