Skip to main content
Log in

Simulation for Carbon Nanotube Dispersion and Microstructure Formation in CNTs/AZ91D Composite Fabricated by Ultrasonic Processing

  • Topical Collection: Physical and Numerical Simulations of Materials Processing
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The dispersion of carbon nanotubes (CNTs) in AZ91D melt by ultrasonic processing and microstructure formation of CNTs/AZ91D composite were studied using numerical and physical simulations. The sound field and acoustic streaming were predicted using finite element method. Meanwhile, optimal immersion depth of the ultrasonic probe and suitable ultrasonic power were obtained. Single-bubble model was used to predict ultrasonic cavitation in AZ91D melt. The relationship between sound pressure amplitude and ultrasonic cavitation was established. Physical simulations of acoustic streaming and ultrasonic cavitation agreed well with the numerical simulations. It was confirmed that the dispersion of carbon nanotubes was remarkably improved by ultrasonic processing. Microstructure formation of CNTs/AZ91D composite was numerically simulated using cellular automation method. In addition, grain refinement was achieved and the growth of dendrites was changed due to the uniform dispersion of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl and R. O. Ritchie: Mater. Sci. Eng. A Struct., 2002, vol. 334, pp. 173-78.

    Article  Google Scholar 

  2. J. Lan, Y. Yang and X. C. Li: Mat. Sci. Eng. A-Struct., 2004, vol. 386, pp. 284-90.

    Article  Google Scholar 

  3. Y. Shimizu, S. Miki, T. Soga, I. Itoh, H. Todoroki, T. Hosono, K. Sakaki, T. Hayashi, Y. A. Kim, M. Endo, S. Morimoto and A. Koide: Scripta Mater., 2008, vol. 58, pp. 267-70.

    Article  Google Scholar 

  4. C. D. Li, X. J. Wang, W. Q. Liu, K. Wu, H. L. Shi, C. Ding, X. S. Hu and M. Y. Zheng: Mat. Sci. Eng. A-Struct., 2014, vol. 597, pp. 264-69.

    Article  Google Scholar 

  5. M. Paramsothy, X. H. Tan, J. Chan, R. Kwok and M. Gupta: Mater. Design., 2013, vol. 45, pp. 15-23.

    Article  Google Scholar 

  6. C. S. Goh, J. Wei, L. C. Lee and M. Gupta: Mat. Sci. Eng. A-Struct., 2006, vol. 423, pp. 153-56.

    Article  Google Scholar 

  7. Shiying Liu, Feipeng Gao, Qiongyuan Zhang, Xue Zhu and Wenzhen Li: T. Nonferr. Metal. Soc., 2010, vol. 20, pp. 1222-27.

    Article  Google Scholar 

  8. F. J. Trujillo and K. Knoerzer: Ultrason. Sonochem., 2011, vol. 18, pp. 1263-73.

    Article  Google Scholar 

  9. A. Moussatov, C. Granger and B. Dubus: Ultrason. Sonochem., 2003, vol. 10, pp. 191-95.

    Article  Google Scholar 

  10. S.W. Rienstra and A. Hirschberg: An Introduction to Acoustics, Eindhoven University of Technology, Eindhoven, 2014, pp. 11-15.

    Google Scholar 

  11. F. Zhao, S. Zhu, X. Feng, and Y. Yang: Acta Phys. Sin. Chinese Ed., 2015, vol. 64, pp.144302-1-10

    Google Scholar 

  12. S. Blairs: J. Colloid Interf. Sci., 2006, vol. 302, pp. 312-14.

    Article  Google Scholar 

  13. S. Hilgenfeldt, M. P. Brenner, S. Grossmann and D. Lohse: J. Fluid Mech., 1998, vol. 365, pp. 171-204.

    Article  Google Scholar 

  14. L. Nastac: Acta Mater., 1999, vol. 47, pp. 4253-62.

    Article  Google Scholar 

  15. P. A. Nikrityuk, K. Eckert and R. Grundmann: Int. J. Heat Mass Tran., 2006, vol. 49, pp. 1501-15.

    Article  Google Scholar 

  16. D. R. Poirier: Metall. Trans. B, 1987, vol. 18, pp. 245-55.

    Article  Google Scholar 

  17. J. Klima, A. Frias-Ferrer, J. Gonzalez-Garcia, J. Ludvik, V. Saez and J. Iniesta: Ultrason. Sonochem., 2007, vol. 14, pp. 19-28.

    Article  Google Scholar 

  18. V. Saez, A. Frias-Ferrer, J. Iniesta, J. Gonzalez-Garcia, A. Aldaz and E. Riera: Ultrason. Sonochem., 2005, vol. 12, pp. 59-65.

    Article  Google Scholar 

  19. Zhi-wen Shao, Qi-chi Le, Zhi-qiang Zhang and Jian-zhong Cui: T. Nonferr. Metal. Soc., 2011, vol. 21, pp. 2476-83.

    Article  Google Scholar 

  20. Guoqiang Han, Zhaohui Wang, Ke Liu, Shubo Li, Xian Du and Wenbo Du: Mat. Sci. Eng. A-Struct., 2015, vol. 628, pp. 350-57.

    Article  Google Scholar 

  21. Hailong Shi, Xiaojun Wang, Chendong Li, Xiaoshi Hu, Chao Ding, Kun Wu and Yudong Huang: Acta Metall. Sin.-Engl., 2014, vol. 27, pp. 909-17.

    Article  Google Scholar 

  22. W. Kurz and D. J. Fisher: Fundamentals of Solidification, 4th ed., Trans Tech Publications Ltd, Switzerland, 1998, pp. 23-28.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51274184) and the Guangdong Science and Technology Project (No. 2013B091300016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuansheng Yang.

Additional information

Manuscript submitted November 28, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhao, F. & Feng, X. Simulation for Carbon Nanotube Dispersion and Microstructure Formation in CNTs/AZ91D Composite Fabricated by Ultrasonic Processing. Metall Mater Trans B 48, 2256–2266 (2017). https://doi.org/10.1007/s11663-017-1047-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1047-0

Keywords

Navigation