Skip to main content
Log in

Gasification Characteristics and Kinetics of Coke with Chlorine Addition

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The gasification process of metallurgical coke with 0, 1.122, 3.190, and 7.132 wt pct chlorine was investigated through thermogravimetric method from ambient temperature to 1593 K (1320 °C) in purified CO2 atmosphere. The variations in the temperature parameters that T i decreases gradually with increasing chlorine, T f and T max first decrease and then increase, but both in a downward trend indicated that the coke gasification process was catalyzed by the chlorine addition. Then the kinetic model of the chlorine-containing coke gasification was obtained through the advanced determination of the average apparent activation energy, the optimal reaction model, and the pre-exponential factor. The average apparent activation energies were 182.962, 118.525, 139.632, and 111.953 kJ/mol, respectively, which were in the same decreasing trend with the temperature parameters analyzed by the thermogravimetric method. It was also demonstrated that the coke gasification process was catalyzed by chlorine. The optimal kinetic model to describe the gasification process of chlorine-containing coke was the Šesták Berggren model using Málek’s method, and the pre-exponential factors were 6.688 × 105, 2.786 × 103, 1.782 × 104, and 1.324 × 103 min−1, respectively. The predictions of chlorine-containing coke gasification from the Šesták Berggren model were well fitted with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. 1. H.M. Yang, G.Z. Qiu and A.D. Tang: J. Cent. South Univ. Technol., 1998, vol. 29, pp. 28-31.

    Google Scholar 

  2. 2. Z.Y. Wang, X.L. Wang,D.J. Liu, W. Zhang, N. Zhang and B. Hao: Ironmaking, 2009, vol. 28, pp. 45-7.

    Google Scholar 

  3. 3. B.S. Hu, Y.L. Gui, X.G. Han and H.L. Guo: China Metall., 2011, vol. 21, pp. 15-7.

    Google Scholar 

  4. 4. E. Jak and P. Hayes: High Temp. Mater. Processes, 2012, vol. 31, pp. 657-65.

    Article  Google Scholar 

  5. 5. Y.Y. Yang and Z.K. Gao: Iron Steel, 1983, vol. 18, p. 32-8.

    Google Scholar 

  6. 6. B.S. Hu, Y.L. Gui, H.L. Guo and C.Y. Song: Adv. Mater. Res., 2012, vol. 396-398: pp. 152-6.

    Google Scholar 

  7. X.G. Han: Hebei United University, 2013.

  8. 8. X.W. Zou, J.Z. Yao, X.M. Yang, W.L. Song and W.G. Lin: Energy & Fuels, 2007, vol. 21, pp. 619-24.

    Article  Google Scholar 

  9. 9. W.L. Wang, X.Y. Ren, L.F. Li, J.M. Chang, L.P. Cai and J. Geng: Fuel Processing Technology, 2015, vol. 134, pp. 345-51.

    Article  Google Scholar 

  10. 11.H.M. Shao, X.Y. Shen, Y. Sun, Y. Liu and Y.C. Zhai: Int. J. Min. Metall. Mater., 2016, vol. 23, pp. 1133-40.

    Article  Google Scholar 

  11. 11.H.M. Shao, X.Y. Shen, Y. Sun, Y. Liu and Y.C. Zhai: Int. J. Min. Metall. Mater., 2016, vol. 23, pp. 1133-40.

    Article  Google Scholar 

  12. 12. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu and N. Sbirrazzuoli: Thermochim. Acta, 2011, vol. 520, pp. 1-19.

    Article  Google Scholar 

  13. 13. V. Sergey and S. Nicolas: Macromolecular Rapid Communications, 2006, vol. 27, pp. 1515-1532.

    Article  Google Scholar 

  14. 14.M.E. Brown, M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, A. Burnham, J. Opfermann, R. Strey, H.L. Anderson, A. Kemmler, R. Keuleers, J. Janssens, H.O. Desseyn, C.R. Li, T.B. Tang, B. Roduit, J. Malek and T. Mitsuhashi: Thermochim. Acta, 2000, vol. 355, pp. 125-43.

    Article  Google Scholar 

  15. 15. M.J. Starink: Thermochim. Acta, 2003, vol. 404, pp. 163-76.

    Article  Google Scholar 

  16. 16. Y. Sekine, K. Ishikawa, E. Kikuchi, M. Matsukata and A. Akimoto: Fuel, 2006, vol. 85, pp. 122-6.

    Article  Google Scholar 

  17. 17. X.Y. Zheng, D.K. Li, C.Y. Feng and X.T. Chen: Thermochim. Acta, 2015, vol. 618, pp. 18-25.

    Article  Google Scholar 

  18. 18. D. Kumar, S.C. Maiti, and C. Ghoroi: Thermochim. Acta, 2016, vol. 624, pp. 35-46.

    Article  Google Scholar 

  19. 19. J. Málek: Thermochim. Acta, 1992, vol. 200, pp. 257-69.

    Article  Google Scholar 

  20. 20. J. Málek: Thermochim. Acta, 1995, vol. 267, pp. 61-73.

    Article  Google Scholar 

  21. 21. G.I. Senum and R.T. Yang: J. Therm. Anal., 1977, vol. 11, pp. 445-7.

    Article  Google Scholar 

  22. 22. M. Hu, Z.H. Chen, D.B. Guo, C.X. Liu, B. Xiao, Z.Q. Hu and S.M. Liu: Bioresour. Technol., 2015, vol. 177, pp. 41-50.

    Article  Google Scholar 

  23. 23. S. Montserrat and J. Málek: Thermochim. Acta, 1993, vol. 228, pp. 47-60.

    Article  Google Scholar 

  24. 24. M.A. Arshad, A. Maaroufi and R. Benavente: Polymer Composites, 2013, vol. 34, pp. 2049-60.

    Article  Google Scholar 

  25. 25. L. Huang, Y.C. Chen, G. Liu, S.N. Li, Y. Liu and X. Gao: Energy, 2015, vol. 87, pp. 31-40.

    Article  Google Scholar 

  26. 26. J. Šesták and G. Berggren: Thermochim. Acta, 1971, vol. 3, pp. 1-12.

    Article  Google Scholar 

  27. 27. J. Abenojar, N. Encinas, J.C.D. Real and M.A. Martínez: Thermochim. Acta, 2014, vol. 575, pp. 144-50.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Beijing Municipal Science & Technology Commission of China (No. Z161100002716017), the Key Program of the National Natural Science Foundation of China (No. U1260202), and the 111 Project (No. B13004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Zhang.

Additional information

Manuscript submitted March 26, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, J., Jiao, K. et al. Gasification Characteristics and Kinetics of Coke with Chlorine Addition. Metall Mater Trans B 48, 2428–2439 (2017). https://doi.org/10.1007/s11663-017-1046-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1046-1

Keywords

Navigation