Skip to main content
Log in

Effect of Holding Time on Surface Films Formed on Molten AZ91D Alloy Protected by Graphite Powder

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Graphite powder was adopted to prevent the AZ91D magnesium alloy from oxidizing during the melting and casting process. The microstructure of the resultant surface films formed at 973 K (700 °C) holding for 0, 15, 30, 45, and 60 minutes was investigated by scanning electron microscopy, energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) after mechanical polishing and chemical etching. The results indicated that the surface films were composed of a protective layer and the underneath particles with different morphology. The protective layer was continuous with a thickness of 200 to 1000 nm mainly consisting of MgO, MgF2, and C, while the underneath particles mainly consisted of MgF2 and MgAl2O4. The surface films were the result of the interaction between the graphite powder, the melt, and the ambient atmosphere. The number and the size of the underneath particles, determining the thickness uniformity of the surface films, and the unevenness of the microsurface morphology increased with holding time. The mechanism of holding time on the resultant surface films was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Fournier, P. Marcus, and I. Olefjord: Surf. Interface Anal., 2002, vol. 34, pp. 494–97.

    Article  Google Scholar 

  2. A. Karger, F.W. Bach, and C. Pelz: Mater. Sci. Forum, 2005, vols. 488–489, p. 4.

    Google Scholar 

  3. X.F. Wang and S.M. Xiong: J. Mater. Sci. Technol., 2014, vol. 30, pp. 353–58.

    Article  Google Scholar 

  4. X.F. Wang and S.M. Xiong: Corros. Sci., 2013, vol. 66, pp. 300–07.

    Article  Google Scholar 

  5. A. Mirak, C.J. Davidson, and J.A. Taylor: Corros. Sci., 2010, vol. 52, pp. 1992–2000.

    Article  Google Scholar 

  6. H.K. Chen and Z.F. Gong: Trans. Nonferrous. Met. Soc., 2012, vol. 22, pp. 2898–2905.

    Article  Google Scholar 

  7. X. Zhang, G. You, J. Zha, and S. Long: Rare Met. Mater. Eng., 2011, vol. 40, pp. 1496–99.

    Article  Google Scholar 

  8. G.Q. You, S.Y. Long, and R.F. Li: Mater. Sci. Forum, 2007, vols. 546–549, pp. 119–22.

    Article  Google Scholar 

  9. W. Ha, J.I. Youn, and Y.J. Kim: Mater. Sci. Forum, 2006, vols. 510–511, pp. 806–09.

    Article  Google Scholar 

  10. H. Won, J.E. Lee, and Y.J. Kim: Mater. Sci. Forum, 2005, vols. 475–479, pp. 2543–46.

    Google Scholar 

  11. S.L. Cheng, G.C. Yang, J.F. Fan, Y.J. Li, and Y.H. Zhou: Trans. Nonferrous Met. Soc., 2009, vol. 19, pp. 299–304.

    Article  Google Scholar 

  12. S. Emami and H.Y. Sohn: Metall. Mater. Trans. B, 2014, vol. 46B, pp. 226–34.

    Google Scholar 

  13. J.W. Fruehling: Ph.D. Thesis, University of Michgan, Ann Arbor, MI, 1970.

  14. S.C. Yang and Y.C. Lin: J. Clean. Prod., 2013, vol. 41, pp. 74–81.

    Article  Google Scholar 

  15. W.M. Guo, H.N. Xiao, and G.J. Zhang: Corros. Sci., 2008, vol. 50, pp. 2007–11.

    Article  Google Scholar 

  16. H. Badenhorst: Chem. Eng. Sci., 2013, vol. 104, pp. 117–24.

    Article  Google Scholar 

  17. D. Dispinar and J. Campbell: Int. J. Cast Met. Res., 2006, vol. 19, pp. 5–17.

    Article  Google Scholar 

  18. J. Campbell and M. Tiryakioglu: Aluminium Alloys 2006, Pts 1 and 2, 2006, vol. 519–521, pp. 1453–60.

  19. M. Divandari and J. Campbell: Int. J. Cast Met. Res., 2005, vol. 18, pp. 187–92.

    Article  Google Scholar 

  20. M. Divandari and J. Campbell: Int. J. Cast Met. Res., 2004, vol. 17, pp. 182–87.

    Article  Google Scholar 

  21. R. Raiszadeh and W.D. Griffiths: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 865–71.

    Article  Google Scholar 

  22. S.A. Azarmehr, M. Divandari, and H. Arabi: Mater. Sci. Technol., 2012, vol. 28, pp. 1295–1300.

    Article  Google Scholar 

  23. S. Amirinejhad, R. Raiszadeh, and H. Doostmohammadi: J. Therm. Anal. Calorim., 2013, vol. 113, pp. 769–77.

    Article  Google Scholar 

  24. B. Nayebi, A. Bahmani, M.S. Asl, A. Rasooli, M.G. Kakroudi, and M. Shokouhimehr: J. Alloys Compd., 2016, vol. 655, pp. 433–41.

    Article  Google Scholar 

  25. R. Raiszadeh and W.D. Griffiths: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 133–43.

    Article  Google Scholar 

  26. R. Raiszadeh and W.D. Griffiths: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 298–303.

    Article  Google Scholar 

  27. A.R. Mirak, M. Divandari, S.M.A. Boutorabi, and J. Campbell: Int. J. Cast Met. Res., 2007, vol. 20, pp. 215–20.

    Article  Google Scholar 

  28. S.M. Xiong and X.L. Liu: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 428–34.

    Article  Google Scholar 

  29. S.H. Nie, S.M. Xiong, and Z. Liu: Rare Met. Mater. Eng., 2007, vol. 36, pp. 21–25.

    Google Scholar 

  30. S.H. Nie, X.L. Liu, S.M. Xiong, and B.C. Liu: J. Mater. Eng., 2005, vol. 6, pp. 3–26.

  31. S. Emami, H.Y. Sohn, and H.G. Kim: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1370–79.

    Article  Google Scholar 

  32. S.H. Nie, S.M. Xiong, and B.C. Liu: Mater. Sci. Eng., A, 2006, vol. 422, pp. 346–51.

    Article  Google Scholar 

  33. W. Ha and Y.J. Kim: J. Alloys Compd., 2006, vol. 422, pp. 208–13.

    Article  Google Scholar 

  34. L. Xiaowei, R. Jean-Charles, and Y. Suyuan: Nucl. Eng. Des., 2004, vol. 227, pp. 273–80.

    Article  Google Scholar 

  35. L. Zhang, J.L. Tang, and D.B. Zeng: Foundry Technol., 2005, vol. 26, pp. 930–34.

    Google Scholar 

  36. Y.J. Chen and P.S. Wei: Mater. Trans., 2007, vol. 48, pp. 3181–89.

    Article  Google Scholar 

  37. F. Czerwinski: Corros. Sci., 2004, vol. 46, pp. 377–86.

    Article  Google Scholar 

  38. W.H. Li, J.X. Zhou, B.C. Ma, J.H. Wu, J.W. Wang, H.H. Zhuang, Y.S. Yang, and X.H. Huang: Mater. Sci. Forum, 2017, vol. 898, pp. 111–17.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the National Key Research and Development Program of China (Grant Nos. 2016YFB0701202 and 2016YFB0301105). This work was also supported by the Natural Science Foundation of Shandong Province (Grant Nos. ZR2016EMB11 and ZR2015YL007) and by the Youth Foundation of Shandong Academy of Sciences (Grant No. 2014QN024). We greatly appreciate the help of Ian R. McAdams and Dr. Feng Gao in revising the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Li.

Additional information

Manuscript submitted December 14, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhou, J., Ma, B. et al. Effect of Holding Time on Surface Films Formed on Molten AZ91D Alloy Protected by Graphite Powder. Metall Mater Trans B 48, 2334–2342 (2017). https://doi.org/10.1007/s11663-017-1036-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1036-3

Keywords

Navigation