Skip to main content
Log in

Influence of Pressure Field in Melts on the Primary Nucleation in Solidification Processing

  • Topical Collection: Physical and Numerical Simulations of Materials Processing
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

It is well known that external fields applied to melts can cause nucleation at lower supercoolings, fragmentation of growing dendrites, and forced convection around the solidification front. All these effects contribute to a finer microstructure of solidified material. In this article, we analyze how the pressure field created with ultrasonic vibrations influences structure refinement in terms of supercooling. It is shown that only high cavitation pressures of the order of 104 atmospheres are capable of nucleating crystals at minimal supercoolings. We demonstrate the possibility of sononucleation even in superheated liquid. Simulation and experiments with water samples show that very high cavitation pressures occur in a relatively narrow zone where the drive acoustic field has an appropriate combination of pressure amplitude and frequency. In order to accurately predict the microstructure formed by ultrasonically assisted solidification of metals, this article calls for the development of equations of state that would describe the pressure-dependent behavior of molten metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. 1. A. Kapustin: The Effect of Ultrasound on the Kinetics of Crystallization, Consultants Bureau, New York, NY, 1963.

    Book  Google Scholar 

  2. 2. O.V. Abramov: Ultrasonics, 1987, vol. 25, pp. 73–82.

    Article  Google Scholar 

  3. 3. G.I. Eskin: Ultrason. Sonochem., 1994, vol. 1, pp. S59–S63.

    Article  Google Scholar 

  4. 4. G.I. Eskin: Metallurgist, 1998, vol. 42, pp. 284–91.

    Article  Google Scholar 

  5. 5. G.I. Eskin: Ultrason. Sonochem., 2001, vol. 8, pp. 319–25.

    Article  Google Scholar 

  6. 6. X. Jian, H. Xu, T. Meek, and Q. Han: Scripta Mater., 2006, vol. 54, pp. 893–96.

    Google Scholar 

  7. 7. Q. Han: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1603–14.

    Article  Google Scholar 

  8. 8. W.T. Richards and A.L. Loomis: J. Am. Chem. Soc., 1927, vol. 49, pp. 1086–1100.

    Article  Google Scholar 

  9. 9. E.A. Hiedemann: J. Acoust. Soc. Am., 1954, vol. 26, pp. 831–42.

    Article  Google Scholar 

  10. 10. K.S. Suslick, Y. Didienko, M.M. Fang, T. Hyeon, T.J. Kolbeck, W.B. McNamara III, M.M. Mdleleni, and M. Wong: Phil. Trans. Roy. Soc. London A, 1999, vol. 357, pp. 335–53.

    Article  Google Scholar 

  11. D.E. Gray, ed., American Institute of Physics Handbook. McGraw-Hill, New York, NY, 1957.

    Google Scholar 

  12. 12. P.W. Bridgman: J. Chem. Phys., 1935, vol. 3, pp. 597–605.

    Article  Google Scholar 

  13. 13. R. Hickling: Nature, 1965, vol. 206, pp. 915–17.

    Article  Google Scholar 

  14. 14. R. Hickling: Phys. Rev. Lett., 1994, vol. 73, pp. 2853–56.

    Article  Google Scholar 

  15. 15. J. Hunt and K. Jackson: Nature, 1966, vol. 211, pp. 1080–81.

    Article  Google Scholar 

  16. 16. R. Chow, R. Blindt, R. Chivers, and M. Povey: Ultrasonics, 2003, vol. 41, pp. 595–604.

    Article  Google Scholar 

  17. 17. D. Yu, B. Liu, and B. Wang: Ultrason. Sonochem., 2012, vol. 19, pp. 459–63.

    Article  Google Scholar 

  18. 18. K. Ohsaka and E.H. Trinh: Appl. Phys. Lett., 1998, vol. 73, pp. 129–31.

    Article  Google Scholar 

  19. 19. B.S. Singh and A. Dybbs: ASME J. Heat Transfer, 1976, vol. 98, pp. 491–95.

    Article  Google Scholar 

  20. 20. P. Satyamurthu, R.K. Marwah, N. Venkatramani, and R.K. Rohatgi: Int. J. Heat Mass Transfer, 1979, vol. 22, pp. 1151–54.

    Article  Google Scholar 

  21. 21. M.C. Flemings: Solidification Processing, Mc-Graw-Hill, New York, NY, 1974.

    Google Scholar 

  22. 22. W. Kurz and D. Fisher: Fundamentals of Solidification, Trans Tech Publications Inc., Enfield, 1998.

    Google Scholar 

  23. 23. E.J. Langham and B.J. Mason: Proc. Roy. Soc. London A, 1958, vol. 247, pp. 493–504.

    Article  Google Scholar 

  24. 24. N. Fletcher: The Chemical Physics of Ice, Cambridge University Press, Cambridge, United Kingdom, 1970.

    Book  Google Scholar 

  25. 25. J. Kloubek: J. Coll. Interface Sci., 1974, vol. 46, pp. 185–90.

    Article  Google Scholar 

  26. 26. E. Yokoyama, I. Yoshizaki, T. Shimaoka, T. Sone, T. Kiyota, and Y. Furukawa: J. Phys. Chem. B, 2011, vol. 115, pp. 8739–45.

    Article  Google Scholar 

  27. 27. Y.I. Frenkel: Kinetic Theory of Liquids, Dover Publications, New York, NY, 1955.

    Google Scholar 

  28. 28. R. Southin and G. Chadwick: Acta Mater., 1978, vol. 26, pp. 223–31.

    Article  Google Scholar 

  29. 29. O.V. Abramov: High-Intensity Ultrasonics: Theory and Industrial Applications, Gordon and Breach Science Publishers, Amsterdam, 1998.

    Google Scholar 

  30. 30. M. Saclier, R. Peczalski, and J. Andrieu: Ultrason. Sonochem., 2010, vol. 17, pp. 98–105.

    Article  Google Scholar 

  31. F.R. Gilmore: Report No. 26-4, Hydrodynamics Laboratory, California Institute of Technology, Pasadena, CA, 1952.

  32. V.A. Akulichev: in High-Intensity Ultrasonic Fileds, L.D. Rozenberg, ed., Plenum Press, New York, NY, 1971, pp. 201–59.

  33. 33. R. Hickling and M.S. Plesset: Phys. Fluids, 1964, vol. 7, pp. 7–14.

    Article  Google Scholar 

  34. 34. R.D. Ivany and F.G. Hammit: ASME J. Basic Eng., 1965, vol. 87, pp. 977–85.

    Article  Google Scholar 

  35. 35. R. Löfstedt, K. Weninger, S. Putterman, and B.P. Barber: Phys. Rev. E, 1995, vol. 51, pp. 4400–10.

    Article  Google Scholar 

  36. 36. J. Holzfuss, M. Rüggeberg, and A. Billo: Phys. Rev. Lett., 1998, vol. 81, pp. 5434–37.

    Article  Google Scholar 

  37. 37. R.C. Tolman: J. Chem. Phys., 1949, vol. 17, pp. 333–37.

    Article  Google Scholar 

  38. 38. D.S. Corti, K.J. Kerr, and K. Torabi: J. Chem. Phys., 2011, vol. 135, p. 024701.

    Article  Google Scholar 

  39. 39. R. Massoudi and A.J. King: J. Phys. Chem., 1974, vol. 78, pp. 2262–66.

    Article  Google Scholar 

  40. 40. D.F. Gaitan, L.A. Crum, C.C. Church, and R.A. Roy: J. Acoust. Soc. Am., 1992, vol. 91, pp. 3166–83.

    Article  Google Scholar 

  41. 41. T.J. Matula: Phil. Trans. Roy. Soc. London A, 1999, vol. 357, pp. 225–49.

    Article  Google Scholar 

  42. 42. L.E. Kinsler and A.R. Frey: Fundamentals of Acoustics, Wiley, New York, NY, 1950.

    Google Scholar 

  43. R.T. Beyer: Nonlinear Acoustics, Naval Ship Systems Command, 1974.

  44. 44. M.S. Plesset: J. Appl. Mech., 1949, vol. 71, pp. 277–82.

    Google Scholar 

  45. 45. B. Noltingk and E. Neppiras: Proc. Phys. Soc. B, 1950, vol. 63, pp. 674–85.

    Article  Google Scholar 

  46. 46. C.E. Brennen: Cavitation and Bubble Dynamics, Oxford University Press, New York, NY, 1995.

    Google Scholar 

  47. 47. J.B. Keller and M. Miksis: J. Acoust. Soc. Am., 1980, vol. 68, pp. 628–33.

    Article  Google Scholar 

  48. 48. A. Prosperetti and A. Lezzi: J. Fluid Mech., 1986, vol. 168, pp. 457–68.

    Article  Google Scholar 

  49. 49. A.T.J. Hayward: Br. J. Appl. Phys., 1967, vol. 18, pp. 965–77.

    Article  Google Scholar 

  50. 50. J.H. Dymond and R. Malhotra: Int. J. Thermophys., 1988, vol. 9, pp. 941–51.

    Article  Google Scholar 

  51. 51. P.W. Bridgman: Proc. Am. Acad. Arts Sci., 1931, vol. 66, pp. 185–233.

    Article  Google Scholar 

  52. 52. P.W. Bridgman: Proc. Am. Acad. Arts Sci., 1933, vol. 68, pp. 1–25.

    Article  Google Scholar 

  53. 53. G.R. Gathers: Int. J. Thermophys., 1990, vol. 11, pp. 693–708.

    Article  Google Scholar 

  54. 54. D.A. Young and B.J. Alder: Phys. Rev. A, 1971, vol. 3, pp. 364–71.

    Article  Google Scholar 

  55. 55. D. Stroud and N.W. Ashcroft: Phys. Rev. B, 1972, vol. 5, pp. 371–83.

    Article  Google Scholar 

  56. 56. I.H. Umar and W.H. Young: J. Phys. F: Metal Phys., 1974, vol. 4, pp. 525–35.

    Article  Google Scholar 

  57. 57. Y. Zhou and G. Stell: Int. J. Thermophys., 1988, vol. 9, pp. 953–63.

    Article  Google Scholar 

  58. D.A. Young: Report No. UCLR 52-352, Lawrence Livermore Laboratory, University of California, Livermore, CA, 1977.

  59. P.R. Levashov, V.E. Fortov, K.V. Khishchenko, and I.V. Lomonosov: AIP Conf. Proc. 505, 2000, vol. 89, pp. 89–92.

  60. 60. S.E. Babb: Rev. Mod. Phys., 1963, vol. 35, pp. 400–13.

    Article  Google Scholar 

  61. 61. M.C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974.

    Google Scholar 

  62. J. Song and Q. Han: NADCA Project No. 176, Purdue University, West Lafayette, IN, 2014.

Download references

Acknowledgment

The authors gratefully acknowledge financial support from the National Science Foundation of China (Grant No. 51320105003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyou Han.

Additional information

Eighth International Conference on Physical and Numerical Simulations of Materials Processing—ICPNS 2016 symposium.

Manuscript submitted December 21, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakita, M., Han, Q. Influence of Pressure Field in Melts on the Primary Nucleation in Solidification Processing. Metall Mater Trans B 48, 2232–2244 (2017). https://doi.org/10.1007/s11663-017-1029-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1029-2

Keywords

Navigation