Skip to main content
Log in

Investigation of the Air-Argon-Steel-Slag Flow in an Industrial RH Reactor with VOF–DPM Coupled Model

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A coupled three-dimensional volume of fluid method–discrete phase model (VOF–DPM) is developed to investigate the air-argon-steel-slag flow in an industrial Rheinsahl–Heraeus (RH) reactor while considering the expansion of argon bubbles. The simulated results of mixing time and recirculation flow rate of molten steel, and the flow pattern and local velocity of water agree well with the measured results reported in the literature. Comparison of the results with and without consideration of the expansion of bubbles indicates that the expansion of bubbles has an enormous impact on the multiphase flow in the industrial RH reactor. The proposed mathematical model presents a more realistic free surface in the RH vacuum vessel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A b :

Bubble surface area (m2)

C b :

Bubble heat capacity (J/kg K)

C D :

Drag coefficient

d b :

Bubble diameter (m)

D :

Snorkel diameter (m)

\( \vec{g} \) :

Gravitational acceleration vector (m/s2)

h b :

Heat transfer coefficient (J/m2 s K)

k m :

Turbulent kinetic energy (m2/s2)

P, P vac, P 0 :

Pressure (N/m2)

Q b, Q l :

Argon flow rate (Nm3/s), and steel recirculation flow rate (m3/s)

r b, r b,0 :

Bubble radius (m)

Re b :

Reynolds number

T l, T b, T b,0 :

Temperature (K)

\( \vec{u}_{\text{i}} \) :

Velocity (m/s)

V b :

Bubble volume (m3)

Sc t :

Turbulent Schmidt number

α i :

Volume fraction

ε m :

Turbulent energy dissipation rate (m2/s3)

λ b :

Thermal conductivity (J/m s K)

μ m, μ t,m :

Volume average viscosity, turbulent viscosity (kg/m s)

ρ i, ρ m :

Density (kg/m3)

b:

Bubble

g:

Top gas

l:

liquid steel

m:

Mixing of the continuous phases

s:

Slag

t:

Turbulent

vac:

At the vacuum chamber

0:

At the nozzle tip

References

  1. K. Shirabe, and J. Szekely: Trans. ISIJ, 1983, vol. 23, pp. 465–74.

    Article  Google Scholar 

  2. G.J. Chen, and S.P. He: Metall. Res. Technol., 2016, vol. 113, pp. 204–U55.

    Article  Google Scholar 

  3. D.Q. Geng, J.X. Zheng, K. Wang, P. Wang, R.Q. Liang, H.T. Liu, H. Lei, and J.C. He: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1484–93.

    Article  Google Scholar 

  4. G.J. Chen, S.P. He, Y.G. Li, and Q. Wang: Ind. Eng. Chem. Res., 2016, vol. 55, pp. 7030–42.

    Article  Google Scholar 

  5. L.F. Zhang, and F. Li: JOM, 2014, vol. 66, pp. 1227–40.

    Article  Google Scholar 

  6. G.J. Chen, and S.P. He: Vacuum, 2016, vol. 130, pp. 48–55.

    Article  Google Scholar 

  7. S.P. He, G.J. Chen, Y.T. Tao, B.Y. Shen, and Q. Wang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 585–94.

  8. G.J. Chen, S.P. He, Y.G. Li, Y.T. Guo, and Q. Wang: JOM, 2016, vol. 68, pp. 2138–48.

    Article  Google Scholar 

  9. Y.G. Park, W.C. Doo, K.W. Yi, and S.B. An: ISIJ Int., 2000, vol. 40, pp. 749–55.

    Article  Google Scholar 

  10. Y.G. Park, K.W. Yi, and S.B. Ahn: ISIJ Int., 2001, vol. 41, pp. 403–09.

    Article  Google Scholar 

  11. Y.G. Park, and K.W. Yi: ISIJ Int., 2003, vol. 43, pp. 1403–09.

    Article  Google Scholar 

  12. D.Q. Geng, H. Lei, and J.C. He: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 234–47.

    Article  Google Scholar 

  13. J.H. Wei, and H.T. Hu: Chin. J. Process Eng., 2006, vol. 6S1, pp. 62–65.

  14. B.K. Li, and F. Tsukihashi: ISIJ Int., 2000, vol. 40, pp. 1203–09.

    Article  Google Scholar 

  15. Y.S. Chen, Y.D. He, D.Q. Cang, and Z.Z. Huang: Int. J. Min. Met. Mater., 2001, vol. 8, pp. 259–63.

    Google Scholar 

  16. M.Y. Zhu, J. Sha, and Z.Z. Huang: Acta Metall. Sin., 2000, vol. 36, pp. 1175–78.

    Google Scholar 

  17. B.K. Li, and F. Tsukihashi: ISIJ Int., 2005, vol. 45, pp. 972–78.

    Article  Google Scholar 

  18. M.Y. Zhu, Y.L. Wu, C.W. Du, and Z.Z. Huang: J. Iron Steel Res. Int., 2005, vol. 12, pp. 20–24.

    Google Scholar 

  19. R. Tsujino, J. Nakashima, M. Hirai, and I. Sawada: ISIJ Int., 1989, vol. 29, pp. 589–95.

    Article  Google Scholar 

  20. M. Szatkowski, and M. C. Tsai: Iron Steelmak., 1991, vol. 18, pp. 65–71.

    Google Scholar 

  21. Y. Kato, H. Nakato, T. Fujii, S. Ohmiy, and S. Takator: ISIJ Int., 1993, vol. 33, pp. 1088–94.

    Article  Google Scholar 

  22. S.K. Ajmani, S.K. Dash, S. Chandra, and C. Bhanu: ISIJ Int., 2004, vol. 44, pp. 82–90.

    Article  Google Scholar 

  23. K. Nakanishi, J. Szekely, and C.W. Chang: Ironmak. Steelmak., 1975, vol. 2, pp. 115–24.

    Google Scholar 

  24. T. Kuwabara, K. Umezawa, K. Mori, and H. Watanabe: Trans. ISIJ, 1988, vol. 28, pp. 305–14.

    Article  Google Scholar 

  25. C. Kamata, S. Hayashi, and K. Ito: Tetsu-to-Hagané, 1998, vol. 84, pp. 484–89.

    Article  Google Scholar 

  26. J.H. Wei, N.W. Yu, Y.Y. Fan, S.L. Yang, J.C. Ma, and D.P. Zhu: J. Shanghai Univ. Engl. Ed., 2002, vol. 6, pp. 167–75.

  27. J.H. Wei, and H.T. Hu: Ironmak. Steelmak., 2005, vol. 32, pp. 427–34.

    Article  Google Scholar 

  28. J.H. Wei, and H.T. Hu: Steel Res. Int., 2006, vol. 77, pp. 91–96.

    Article  Google Scholar 

  29. J.H. Wei, and H.T. Hu: Steel Res. Int., 2006, vol. 77, pp. 32–36.

    Article  Google Scholar 

  30. J.H. Wei, and H.T. Hu: Chin. J. Process Eng., 6S1, 2006, vol. 6, pp. 66–71.

  31. P.A. Kishan,and S.K. Dash: ISIJ Int., 2009, vol. 49, pp. 495–504.

    Article  Google Scholar 

  32. M. Cournil, F. Gruy, and P. Gardin: Computational Modeling of Materials, Minerals and Metals Processing, San Diego, California, 2001, vol. 23–26, pp. 139–48.

  33. P. A. Kishan, and S. K. Dash: Int. J. Numer. Method H., 2006, vol. 16, pp. 890–909.

    Article  Google Scholar 

  34. A.A. Nascimento, and R.P. Tavares: Iron & steel technology conference, Louis, Missouri, 2009, vol. 1, pp. 897–905.

  35. L. Neves, C.A.R. Carneiro, R.F. Reis, and R.P. Tavares: Computer Methods in Materials Science, 2010, vol. 10, pp. 207–13.

    Google Scholar 

  36. F.S. Qi, L. Yang, B.K. Li, and T. Fumitaka: J. Iron Steel Res. Int., 2011, vol. 18S2, pp. 176–81.

  37. F.S. Qi, L. Yang, H.J. Liu, and B.K. Li: J. Iron Steel Res. Int., 2012, vol. 19, pp. 888–91.

    Article  Google Scholar 

  38. J. Han, X.D. Wang, and D.C. Ba: Vacuum, 2014, vol. 109, pp. 68–73.

    Article  Google Scholar 

  39. S.W. Cloete, J.J. Eksteen, and S.M. Bradshaw: Prog. Comput. Fluid Dy., 2009, vol. 9, pp. 345–56.

    Article  Google Scholar 

  40. S.W. Cloete, J.J. Eksteen, and S.M. Bradshaw: Miner. Eng., 2013, vol. 46, pp. 16–24.

    Article  Google Scholar 

  41. H. Liu, Z. Qi, and M. Xu: Steel Res. Int., 2011, vol. 82, pp. 440–58.

    Article  Google Scholar 

  42. U. Sand, H. Yang, J.E. Eriksson, and R.B. Fdhila: Steel Res. Int., 2009, vol. 80, pp. 441–49.

    Google Scholar 

  43. L. Li, Z. Liu, M. Cao, and B. Li: JOM, 2015, vol. 67, pp. 1459–67.

    Article  Google Scholar 

  44. L. Li, and B. Li: JOM, 2016, vol. 68, pp. 2160–69.

    Article  Google Scholar 

  45. X. Zhou, M. Ersson, L. Zhong, and P. Jönsson: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 434–45.

    Article  Google Scholar 

  46. Y. Li, W.T. Lou, and M.Y. Zhu: Ironmak. Steelmak., 2013, vol. 40, pp. 505–14.

    Article  Google Scholar 

  47. H. Ling, F. Li, L. Zhang, and A.N. Conejo: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1950–61.

    Article  Google Scholar 

  48. D.Q. Geng, H. Lei, and J.C. He: ISIJ Int., 2012, vol. 52, pp. 1036–44.

    Article  Google Scholar 

  49. H.F. Svendsen, H.A. Jakobsen, and R. Torvik: Chem. Eng. Sci., 1992, vol. 47, pp. 3297–304.

    Article  Google Scholar 

  50. D. Pfleger, and S. Becker: Chem. Eng. Sci., 2001, vol. 56, pp. 1737–47.

    Article  Google Scholar 

  51. R.T. Lahey Jr: J. Fluids Eng., 1994, vol. 116, pp. 128–34.

    Article  Google Scholar 

  52. S.T. Johansen, and F. Boysan: Metall. Mater. Trans. B, 1988, vol. 19B, pp. 755–64.

    Article  Google Scholar 

  53. R.T. Lahey Jr, and D.A. Drew: J. Fluids Eng., 1990, vol. 112, pp. 107–13.

    Article  Google Scholar 

  54. U. Singh, R. Anapagaddi, S. Mangal, K.A. Padmanabhan, and A.K. Singh: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1804–16.

    Article  Google Scholar 

  55. K.Y. Chu, H.H. Chen, P.H. Lai, H.C. Wu, and Y.C. Liu, C.C. Lin, and M.J. Lu: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 948–62.

    Article  Google Scholar 

  56. R.D. Morales, S.G. Hernandez, D.J. Barreto, A.C. Huerta, I.C. Ramos, and E. Gutierrez: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2595–606.

    Article  Google Scholar 

  57. I.C. Ramos, and R.D. Morales: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1866–81.

    Article  Google Scholar 

  58. J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phys., 1992, vol. 100, pp. 335–54.

    Article  Google Scholar 

  59. B.E. Launder, and D.B. Spalding: Lectures in Mathematical Models of Turbulence. Academic Press, London, 1972.

    Google Scholar 

  60. A. Haider, and O. Levenspiel: Powder technol., 1989, vol. 58, pp. 63–70.

    Article  Google Scholar 

  61. J. Szekely, and G. P. Martins: Trans. Met. Soc. AIME.,1969, vol. 245, pp. 629–36.

    Google Scholar 

  62. M. Sano, K. Mori, and Y. Fujita: Tetsu-to-Hagané, 1979, vol. 65, pp. 1140–48.

    Article  Google Scholar 

  63. V.G. Levich, and S. Technica: Physicochemical Hydrodynamics. Prentice-Hall Inc, Englewood, Cliffs, 1962.

    Google Scholar 

  64. P.V. Danckwerts: Gas-Liquid Reactions. McGraw-Hill Book Company, Great Britain, 1970.

    Google Scholar 

  65. M. Ek, L. Wu, P. Valentin, and D. Sichen: Steel Res. Int., 2010, vol. 81, pp. 1056–63.

    Article  Google Scholar 

  66. M. Warzecha, J. Jowsa, P. Warzecha, and H. Pfeifer: Steel Res. Int., 2008, vol. 79, pp. 852–60.

    Article  Google Scholar 

  67. N. Kurokawa: Proc. of 5th int. conf. for licenses of the RH process, Thyssen Stahl Aktiengesellschaft, Vienna, Duisburg, 1987, p. 61.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengping He.

Additional information

Manuscript submitted June 10, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., He, S. & Li, Y. Investigation of the Air-Argon-Steel-Slag Flow in an Industrial RH Reactor with VOF–DPM Coupled Model. Metall Mater Trans B 48, 2176–2186 (2017). https://doi.org/10.1007/s11663-017-0992-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0992-y

Keywords

Navigation