Skip to main content
Log in

Influence of Yb:YAG Laser Beam Parameters on Haynes 188 Weld Fusion Zone Microstructure and Mechanical Properties

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The weldability of 1.2 mm thick Haynes 188 alloy sheets by a disk Yb:YAG laser welding was examined. Butt joints were made, and the influence of parameters such as power, size, and shape of the spot, welding speed, and gas flow has been investigated. Based on an iconographic correlation approach, optimum process parameters were determined. Depending on the distribution of the power density (circular or annular), acceptable welds were obtained. Powers greater than 1700 W, welding speeds higher than 3.8 m mm−1, and spot sizes between 160 and 320 μm were needed in the circular (small fiber) configuration. By comparison, the annular (large fiber) configuration required a power as high as 2500 W, and a welding speed less than 3.8 m min−1. The mechanical properties of the welds depended on their shape and microstructure, which in turn depended on the welding conditions. The content of carbides, the proportion of areas consisting of cellular and dendritic substructures, and the size of these substructures were used to explain the welded joint mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.W. Duley, Laser welding, John Wiley & Sons, New York, 1998.

    Google Scholar 

  2. W.M. Steen and J. Mazumder: Laser Material Processing, Springer Verlag, London, 2010, pp. 199-249.

    Book  Google Scholar 

  3. X. Gao, L. Zhang, J. Liu and J. Zhang: Mater. Sci. Eng., A, 2013, vol. 559, pp. 14-21.

    Article  Google Scholar 

  4. A.J. Kemp, G.J. Valentine and D. Burns: Prog. Quantum Electron., 2004, vol. 28, pp. 305-344.

    Article  Google Scholar 

  5. N.P. Barnes: IEEE Journal of Selected Topics in Quantum Electronics, 2007, vol. 13-3, pp. 435-447.

    Article  Google Scholar 

  6. A. Geisen and J. Speiser: IEEE Journal of Selected Topics in Quantum Electronics, 2007, vol. 13-3, pp. 598-609.

    Article  Google Scholar 

  7. S. Ruppik, F. Becker, F. Grundmann, W. Rath, and U. Hefter: Proc. SPIE8235 Solid State Lasers XXI—Technology and Devices, 2012, vol. 8235, pp. 1–15.

  8. T. Scheller, A. Bastick, and M. Griebel: Proc. SPIE 8239, High Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications, 82390B, San Francisco, 2012, vol. 8239, pp. 1–10.

  9. O.A. Idowu, O.A. Ojo, and M.C. Chaturvedi: Mater. Sci. Eng., A, vol. 454–455, pp. 389–97.

  10. M. Pang, G. Yu, H.-H. Wang and C.-Y. Zheng: J. Mater. Process. Technol., 2008, vol. 207, pp. 271–275.

    Article  Google Scholar 

  11. R.G. Thompson, J.J. Cassimus, D.E. Mayo and J.R. Dobbs: Weld. J., 1985, vol. 64, no. 4, pp. S91-S96.

    Google Scholar 

  12. J.J. Pepe, and W.F. Savage: Weld. J. Res. Suppl., 1967, vol. 46(9), pp. 411–422.

    Google Scholar 

  13. M. Zhong, H. Sun, W. Liu, and X. Zhuand: J. He: Scr. Mater., 2005, vol. 53 (2), pp. 159–164.

    Google Scholar 

  14. A. Odabası, N. Ünlü, G. Göller, E. Kayalı and M. Eruslu: Mater. Sci. Eng., A, 2013, vol.559, pp. 731-741.

    Article  Google Scholar 

  15. B.S. Yilbas, and S. Akthar: Int. J. Adv. Manuf. Technol., 2011, vol. 56(1), pp. 115–124.

    Article  Google Scholar 

  16. F. Caiazzo, V. Alfieri, V. Sergi, A. Schipani and S. Cinque: Int J Adv Manuf Technol., 2013, vol. 68(5), pp. 1809-1820.

    Article  Google Scholar 

  17. Y. Makino, K. Honda and S. Kimura: Welding international, 1999, vol. 13, pp. 612-620.

    Article  Google Scholar 

  18. J. Graneix, J.-D. Beguin, F. Pardheillan, J. Alexis and T. Masri: MATEC Web of Conferences, 2014, vol. 14, 13006, pp. 1-6.

    Google Scholar 

  19. M. Lesty: La revue de Modulad, 1999, vol. 22, pp. 41-77.

    Google Scholar 

  20. S. Postma. Weld Pool Control in Nd:YAG Laser Welding, thesis, Enschede, the Netherlands. Printed by Océ, 2003.

  21. J. Brooks. Weld solidification and microstructural development trends in welding research. Proceeding of the 4th International Conference, 2003. pp. 123–133, Gatlinburg, Tennessee.

  22. A.F. Giamei, E.H. Kraft, and F.D. Lemkey. New trends in Materials Processing: papers presented at a seminar of the American Society for Metals, October 19 and 20, 1974, Metal Parks, Ohio, 1976.

  23. A.-M. El-Batahgy: Mater. Lett., 1997, vol. 32, pp. 155-163.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to EXAMECA for their financial support, in particular for providing the Haynes 188 alloy. They furthermore thank Cédric Bellot, Director of ACRDM, for giving them access to the synchrotron facilities at ESRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Alexis.

Additional information

Manuscript submitted December 13, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graneix, J., Beguin, JD., Alexis, J. et al. Influence of Yb:YAG Laser Beam Parameters on Haynes 188 Weld Fusion Zone Microstructure and Mechanical Properties. Metall Mater Trans B 48, 2007–2016 (2017). https://doi.org/10.1007/s11663-017-0989-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0989-6

Keywords

Navigation