Skip to main content

Advertisement

Log in

A Comparison between Two Cell Designs for Electrochemical Neodymium Reduction Using Numerical Simulation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Nowadays, neodymium is almost solely produced by the electrochemical reduction of Neodymium oxide in fused fluoride salts. Thereby, the fluid flow distribution within the electrolysis cell is important for the productivity and efficiency of the process. In this work, the flow field within a conventional cell with vertical electrodes is compared to that of an innovative cell concept with horizontal electrodes by computational fluid dynamics. The numerical model uses the Eulerian volume of fluid approach to track phase boundaries between the continuous phases, while the Lagrangian discrete phase model is applied to compute the rising trajectories of emitted off-gas bubbles. The calculated results indicate that the new cell type is more suitable for the efficient, large-scale production of neodymium, since there is potential to decrease the cell voltage and enhance the current efficiency. By that, the specific energy consumption can be lowered significantly. However, an advanced level of automation is necessary to operate the new cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.K. Gupta and N. Krishnamurthy: Extractive Metallurgy of Rare Earth, CRC Press, Boca Raton, FL, 2005.

    Google Scholar 

  2. S. Pang, S. Yan, Z. Li, D. Chen, L. Xu, and B. Zhao: Chin. J. Rare Met., 2011, vol. 35, pp. 440–450 (translated from Chinese by Que Z).

    Google Scholar 

  3. K. Liu, J. Chen, and X. Wei: Chin. J. Nonferrous Met., 2001, vol. 11, pp. 99–101 (translated from Chinese by Pan Q).

    Google Scholar 

  4. H. Vogel, B. Flerus, F. Stoffner, and B. Friedrich: J. Sustainable Metall.—Special Issue: Rare Earths, 2016

  5. K. Liu, J. Chen, and X. Wei: Chin. Rare Earths, 2001, vol. 22, pp. 30–33 (translated from Chinese by Pan Q).

    Google Scholar 

  6. Z. Zhang, X. Liang, J. Ju, and G. Xu: Chinese Society of Rare Earth—Conf. Proc. 2000, pp. 207–11 (translated from Chinese by Wang J).

  7. D. Chen, S. Yan, Z. Li, S. Pang, L. Xu, and X. Guo: J. Chin. Rare Earth Soc., 2011, vol. 29, pp. 769–72 (translated from Chinese by Que Z).

    Google Scholar 

  8. J. Wang, Z. Zhang, G. Tu, and W. Wu: Chin. Rare Earths, 2012, vol. 33, pp. 64–67 (translated from Chinese by Que Z).

    Google Scholar 

  9. Y. Ren, X. Kong, and L. Xie: J. Rare Earths, 2004, vol. 22, pp. 252–56.

    Google Scholar 

  10. S. Fu: J. Chin. Rare Earth Soc., 2007, vol. 25, pp. 71–76 (translated from Chinese by Pan Q).

    Google Scholar 

  11. C.W. Hirt and B.D. Nichols: J. Comput. Phys., 1981, vol. 39, pp. 201–25

    Article  Google Scholar 

  12. K. Liu, J. Chen, and X. Wei: Rare Met. Cemented Carbides, 2000, vol. 143, p. 7 (translated from Chinese by Pan Q).

    Google Scholar 

  13. K. Liu, J. Chen, X. Wei, T. Zheng, L. Xie, and X. Kong: Chin. Rare Earths, 2000, vol. 21, pp. 37–39 (translated from Chinese by Pan Q).

    Google Scholar 

  14. M. Alam, W. Yang, K. Mohanarangam, G. Brooks, and Y. Morsi: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1155–65.

    Article  Google Scholar 

  15. T. Frank, J. Shi, and A.D. Burns: 3rd Int. Symp. on Two-Phase Flow Modelling and Experimentation, Pisa, 2004.

    Google Scholar 

  16. A. Tomiyama, I. Kataoka, I. Zun, and T. Sakaguchi: JSME Int. J. Ser. B Fluids Thermal Eng., 1998, vol. 41, pp. 472–79.

    Article  Google Scholar 

  17. A.W.G. de Vries, A. Biesheuvel, and L. van Wijngaarden: Int. J. Multiphase Flow, 2002, vol. 28, pp. 1823–35.

    Article  Google Scholar 

  18. C. Brücker: Phys. Fluids, 1999, vol. 11, pp. 1781–96.

    Article  Google Scholar 

  19. Yuqing Feng, M. Philip Schwarz, William Yang, and Mark Cooksey: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1959–81.

    Article  Google Scholar 

  20. M. Ishii and N. Zuber: AIChE J., 1979, vol. 25, pp. 843–55.

    Article  Google Scholar 

  21. L. Schiller and A.Z. Naumann: Ver. Deut. Ing., 1933, vol. 77, pp. 318–20.

    Google Scholar 

  22. F. Peebles and H. Garber: Chem. Eng. Progr., 1953, vol. 49, pp. 88–97.

    Google Scholar 

  23. G. Bozzano and M. Dente: Comput. Chem. Eng., 2001, vol. 25, pp. 571–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Haas.

Additional information

Manuscript submitted July 5, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haas, T., Hilgendorf, S., Vogel, H. et al. A Comparison between Two Cell Designs for Electrochemical Neodymium Reduction Using Numerical Simulation. Metall Mater Trans B 48, 2187–2194 (2017). https://doi.org/10.1007/s11663-017-0982-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0982-0

Keywords

Navigation