Skip to main content
Log in

Effects of High-Temperature Preoxidation on the Titanomagnetite Ore Structure and Reduction Behaviors in Fluidized Bed

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The oxidation behaviors of South Africa (SA) titanomagnetite (TTM) and its effects on the gas solid reduction in the fluidized bed were investigated on the basis of the two-stage short process of direct reduction–electric arc furnace (DR-EAF) melting separation. The results showed that the oxidation phase transformations in the high-temperature range from 1073 K to 1223 K (800 °C to 950 °C) can be divided into two typical processes: with the fast generation of pseudobrookite and with the maghemite generation at the initial stage. The reduction efficiency for SA TTM was improved by the preoxidation treatment, mainly because of the dissociation of titania-ferrous oxides to the easy reducible hematite. However, at a preoxidation temperature higher than 1173 K (900 °C), the improving effect became weak, due to high-temperature sintering and the larger crystallite size of oxidation products. There is an extreme value of the preoxidation influence, and the optimum preoxidation time is different for various temperatures. The reduction metallization degree of SA TTM can be relatively improved by 14.5 and 4.5 pct for the first and second reduction steps, respectively, by 1173 K (900 °C) preoxidation with an optimum time of 30 minutes. Finally, the equilibrium relationship between the metallization degree and the gas reduction potential for TTM ore with preoxidation treatment was built.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.L. Yang and J.F. Sheng: Technology of Pig Iron and Titanium Slag Smelting, Metallurgy Industry Press, Beijing, 2006.

    Google Scholar 

  2. U.S. Geological Survey: USGS Mineral Commodity Summaries 2015, Unit State Geologic, Washington, DC, 2015.

  3. H.Y. Sun, J.S. Wang, X.J. Dong, and Q.G. Xue: Met. Int., 2012, vol. 17 (7), pp. 49–56.

    Google Scholar 

  4. J.L. Zhang, Z.J. Liu, and T.J. Yang: Non-Blast Furnace Ironmaking, Metallurgy Industry Press, Beijing, 2015.

    Google Scholar 

  5. E. Park, S.B. Lee, O. Ostrovski, D.J. Min, and C. H. Rhee: ISIJ Int., 2004, vol. 44 (1), pp. 214–16.

    Article  Google Scholar 

  6. J.O. Edstrom: J. Iron Steel Inst., 1953, vol. 175, No. 3, pp. 289–304.

    Google Scholar 

  7. K. Sun, R. Takahash, and J. Yagi: ISIJ Int., 1992, vol. 32 (9), pp. 953–61.

    Article  Google Scholar 

  8. P.L. Vijay, R. Venugopalan, and D. Sathiyamoorthy: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 731–38.

    Article  Google Scholar 

  9. S.K. Gupta, V. Rajkumar, and P. Grieveson: Can. Metall. Q., 1990, vol. 29 (1), pp. 43–49.

    Article  Google Scholar 

  10. D.G. Jones: J. Appl. Chem. Biotechnol., 1975, vol. 25 (8), pp. 561–82.

    Article  Google Scholar 

  11. R. Merk and C.A. Pickles: Can. Metall. Q., 1988, vol. 27 (3), pp. 179–85.

    Article  Google Scholar 

  12. C. Standard: The Ferric Chloride-Sodium Acetate Volumetric Method for the Determination of Metallic Iron Content (GB 6730.6-86), China Standards Press, Beijing, 1987.

  13. X.M. Liu, J. Shaw, J.Z. Jiang, J. Bloemendal, P. Hesse, T. Rolph, and X.G. Mao: Sci. China Earth Sci., 2010, vol. 40, No. 5, pp. 592–602.

    Google Scholar 

  14. K.J. Gallagher, W. Feitknecht, and U. Mannweiler: Nature, 1968, vol. 217, pp. 1118–21.

    Article  Google Scholar 

  15. X. Fu, Y. Wang, and F. Wei: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1338–48.

    Article  Google Scholar 

  16. J.B. Zhang, Q.S. Zhu, Z.H. Xie, C. Lei, and H.Z. Li: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 897–905.

    Article  Google Scholar 

  17. D.B. Rao and M. Rigaud: Oxid. Met., 1975, vol. 9 (1), pp. 99–116.

    Article  Google Scholar 

  18. J.B. Zhang, G.Y. Zhang, Q.S. Zhu, C. Lei, Z.H. Xie, and H.Z. Li: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 914–22.

    Article  Google Scholar 

  19. H.Y. Sun, A.A. Adetoro, Z. Wang, F. Pan, and L. Li: ISIJ Int., 2016, vol. 56 (6), pp. 935–42.

    Google Scholar 

  20. H.Y. Sun, J.S. Wang, L.J. Cao, and Q.G. Xue: Trans. Mater. Heat Treatment, 2012, vol. 33 (9), pp. 1–6.

    Article  Google Scholar 

  21. G. Zhang and O. Ostrovski: Int. J. Miner. Process., 2002, vol. 64 (4), pp. 201–18.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant No. 51404228), the National Outstanding Youth Science Fund Project of NSFC (Grant No. 21325628), National Program on Key Basic Research Project of China (973 Program) No. 2013CB632603 and Chinese Academy of Sciences—The World Academy of Sciences (CAS-TWAS) President Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haoyan Sun or Qingshan Zhu.

Additional information

Manuscript submitted November 27, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Adetoro, A.A., Pan, F. et al. Effects of High-Temperature Preoxidation on the Titanomagnetite Ore Structure and Reduction Behaviors in Fluidized Bed. Metall Mater Trans B 48, 1898–1907 (2017). https://doi.org/10.1007/s11663-017-0925-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0925-9

Keywords

Navigation