Skip to main content
Log in

Hydrodynamic Study of a Submerged Entry Nozzle with Flow Modifiers

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The fluid flow modifier technology for continuous casting process was evaluated through numerical simulations and physical experiments in this work. In the casting of steel into the mold, the process presents liquid surface instabilities which extend along the primary cooling stage. By the use of trapezoid elements installed on the external walls of the submerged nozzle, it was observed that it is possible to obtain symmetry conditions at the top of the mold and prevent high level fluctuations. The flow modifiers have equidistant holes in the submerged surface to reduce the velocity of the liquid surface by energy and mass transfer between the generated quadrants. A flow modifier drilled with a 25 pct of the submerged surface provides stability in the mold and structural stability of the proposal is guaranteed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M. Y. Zhu, Z. Z. Cai and H. Q. Yu, J Iron Steel Res Int 2013, vol. 20, pp. 6-17.

    Article  Google Scholar 

  2. D. Kalisz, Arch Metall Mater 2013, vol. 58, pp. 35-41.

    Google Scholar 

  3. L. F. Zhang and Y. F. Wang, Jom-Us 2012, vol. 64, pp. 1063-1074.

    Article  Google Scholar 

  4. A.I. Zaitsev, I.G. Rodionova, G.V. Semernin, N.G. Shaposhnikov, and A.Y. Kazankov, Metallurgist, 2011, vol. 55, pp. 107–15.

    Article  Google Scholar 

  5. Z. Y. Deng, M. Y. Zhu, B. J. Zhong and S. C. Du, Isij Int 2014, vol. 54, pp. 2813-2820.

    Article  Google Scholar 

  6. Cesar A. Real-Ramirez and Jesus I. Gonzalez-Trejo, International Journal of Minerals Metallurgy and Materials 2011, vol. 18, pp. 397-406.

    Article  Google Scholar 

  7. Z. Q. Liu, B. K. Li, M. F. Jiang and F. Tsukihashi, Isij Int 2013, vol. 53, pp. 484-492.

    Article  Google Scholar 

  8. Y. Li, X. H. Zhang, P. Lan and J. Q. Zhang, International Journal of Minerals Metallurgy and Materials 2013, vol. 20, pp. 138-145.

    Article  Google Scholar 

  9. R. Liu, B.G. Thomas, and J. Sengupta: IOP Conf. Ser. Mater. Sci., 2012, vol. 33.

  10. H. Y. Hwang and G. A. Irons, Metall Mater Trans B 2012, vol. 43, pp. 302-315.

    Article  Google Scholar 

  11. X. Jin, D. F. Chen, X. Xie, J. L. Shen and M. J. Long, Steel Res Int 2013, vol. 84, pp. 31-39.

    Article  Google Scholar 

  12. X. B. Li, H. Ding, Z. Y. Tang and J. C. He, International Journal of Minerals Metallurgy and Materials 2012, vol. 19, pp. 21-29.

    Article  Google Scholar 

  13. A. Landstrom and M. J. Thurley, Ieee J-Stsp 2012, vol. 6, pp. 866-875.

    Google Scholar 

  14. M. Sadat, A. H. Gheysari and S. Sadat, Heat Mass Transfer 2011, vol. 47, pp. 1601-1609.

    Article  Google Scholar 

  15. Bingzhen Shen, Houfa Shen and Baicheng Liu, Isij Int 2007, vol. 47, pp. 427-432.

    Article  Google Scholar 

  16. X. M. Yang, S. X. Liu, J. S. Jiao, M. Zhang, J. P. Duan, L. Li and C. Z. Liu, Steel Res Int 2012, vol. 83, pp. 269-287.

    Article  Google Scholar 

  17. D. Mazumdar, O. P. Singh, J. Dutta, S. Ghosh, D. Satish and S. Chakraborty, T Indian I Metals 2011, vol. 64, pp. 593-605.

    Article  Google Scholar 

  18. N. Ding, Y. P. Bao, Q. S. Sun and L. F. Wang, International Journal of Minerals Metallurgy and Materials 2011, vol. 18, pp. 292-296.

    Article  Google Scholar 

  19. C. Real, R. Miranda, C. Vilchis, M. Barron, L. Hoyos and J. Gonzalez, Isij Int 2006, vol. 46, p. 1183.

    Article  Google Scholar 

  20. F. Rivera-Perez, C. Real-Ramirez, R. Miranda-Tello, R. Hernandez-Santoyo, F. Cervantes-de la Torre, and J. Gonzalez-Trejo, Math. Probl. Eng., 2014.

  21. Dantec Dynamics A/S: DynamicStudio User’s Guide, Dantec Dynamics, Skovlunde, Denmark, 2013, pp. 660

  22. B. E. Launder and D. B. Spalding, Computer Methods in Applied Mechanics and Engineering 1974, vol. 3, pp. 269-289.

    Article  Google Scholar 

  23. FLUENT6.2, User Manual, Ansys Inc., 10 Cavendish Court, Lebanon, New Hampshire, 2009.

  24. S. Yokoya, S. Takagi, S. Ootani, M. Iguchi, K. Marukawa and S. Hara, Isij Int 2001, vol. 41, pp. 1208-1214.

    Article  Google Scholar 

  25. B. G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S. P. Vanka and M. B. Assar, Isij Int 2001, vol. 41, pp. 1262-1271.

    Article  Google Scholar 

  26. Y. Tsukaguchi, O. Nakamura, P. Jonsson, S. Yokoya, T. Tanaka and S. Hara, Isij Int 2007, vol. 47, pp. 1436-1443.

    Article  Google Scholar 

  27. C. Pfeiler, M. Wu and A. Ludwig, Mat Sci Eng a-Struct 2005, vol. 413, pp. 115-120.

    Article  Google Scholar 

  28. Q. Yuan, S. Sivaramakrishnan, S. P. Vanka and B. G. Thomas, Metall Mater Trans B 2004, vol. 35, pp. 967-982.

    Article  Google Scholar 

  29. D. E. Hershey, B. G. Thomas and F. M. Najjar, Int J Numer Meth Fl 1993, vol. 17, pp. 23-47.

    Article  Google Scholar 

  30. D. Gupta, S. Chakraborty and A. K. Lahiri, Isij Int 1997, vol. 37, pp. 654-658.

    Article  Google Scholar 

  31. Chaudhary, G. G. Lee, B. G. Thomas, S. M. Cho, S. H. Kim and O. D. Kwon, Metall Mater Trans B 2011, vol. 42, pp. 300-315.

    Article  Google Scholar 

  32. E. Paterna, P. Moonen, V. Dorer, and J. Carmeliet, Meas. Sci. Technol., 2013, vol. 24.

  33. B. Harcsik and G. Karoly, Steel Res Int 2013, vol. 84, pp. 129-135.

    Article  Google Scholar 

  34. J. Lamut, J. Falkus, B. Jurjevec and M. Knap, Arch Metall Mater 2012, vol. 57, pp. 319-324.

    Google Scholar 

  35. B. Harcsik, P. Tardy and G. Karoly, Rev Metall-Paris 2012, vol. 109, pp. 177-186.

    Article  Google Scholar 

  36. H. Kania and K. Nowacki, Arch Metall Mater 2012, vol. 57, pp. 981-986.

    Google Scholar 

  37. J. Gonzalez-Trejo, C.A. Real-Ramirez, R. Miranda-Tello, F. Rivera-Perez, and F. Cervantes-de-la-Torre, Arch. Metall. Mater., unpublished research, 2016.

  38. L. F. Zhang and B. G. Thomas, Isij Int 2003, vol. 43, pp. 271-291.

    Article  Google Scholar 

  39. Z. Q. Liu, B. K. Li and M. F. Jiang, Metall Mater Trans B 2014, vol. 45, pp. 675-697.

    Article  Google Scholar 

  40. W. J. Wang, X. H. Wang, J. M. Zhang, W. J. Wang and Y. Y. Zhou, J Univ Sci Technol B 2000, vol. 7, pp. 193-196.

    Google Scholar 

  41. R. Hagemann, R. Schwarze, H. P. Heller and P. R. Scheller, Metall Mater Trans B 2013, vol. 44, pp. 80-90.

    Article  Google Scholar 

  42. J. W. Cho and H. T. Jeong, Metall Mater Trans B 2013, vol. 44, pp. 146-153.

    Article  Google Scholar 

Download references

Acknowledgments

J. Gonzalez-Trejo, C.A. Real-Ramirez, and R. Miranda-Tello thank the SNI for the distinction granted and the stipend received. The physical experiments were developed in the LABINTHAP SEPI-ESIME at the Instituto Politecnico Nacional. The numerical simulations were carried out in the Scientific Computing Laboratory of the Department of Systems at the Universidad Autonoma Metropolitana-Azcapotzalco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar Augusto Real-Ramirez.

Additional information

Manuscript submitted June 15, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Real-Ramirez, C.A., Miranda-Tello, R., Carvajal-Mariscal, I. et al. Hydrodynamic Study of a Submerged Entry Nozzle with Flow Modifiers. Metall Mater Trans B 48, 1358–1375 (2017). https://doi.org/10.1007/s11663-016-0863-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0863-y

Keywords

Navigation