Metallurgical and Materials Transactions B

, Volume 48, Issue 1, pp 642–654 | Cite as

Corrosion Performance of Fe-Based Alloys in Simulated Oxy-Fuel Environment

  • Zuotao ZengEmail author
  • Ken Natesan
  • Zhonghou Cai
  • David L. Rink


The long-term corrosion of Fe-based alloys in simulated oxy-fuel environment at 1023 K (750 °C) was studied. Detailed results are presented on weight change, scale thickness, internal penetration, microstructural characteristics of the corrosion products, and the cracking of scales for the alloys after exposure at 1023 K (750 °C) for up to 3600 hours. An incubation period during which the corrosion rate was low was observed for the alloys. After the incubation period, the corrosion accelerated, and the corrosion process followed linear kinetics. Effects of alloy, CaO-containing ash, and gas composition on the corrosion rate were also studied. In addition, synchrotron nanobeam X-ray analysis was employed to determine the phase and chemical composition of the oxide layers on the alloy surface. Results from these studies are being used to address the long-term corrosion performance of Fe-based alloys in various coal-ash combustion environments and to develop methods to mitigate high-temperature ash corrosion.


Corrosion Rate Oxide Scale SiO2 Layer Alloy 602CA Coal Power Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the U.S. Department of Energy, Office of Fossil Energy, Advanced Research Materials Program, Work Breakdown Structure Element ANL-4, under Contract DE-AC02-06CH11357. Use of the Advanced Photon Source, the Center for Nanoscale Materials, and the Electron Microscopy Center for Materials Research was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357.


  1. 1.
    B. Bordenet: Mater. Corros., 2008, vol. 59, pp. 361–66.CrossRefGoogle Scholar
  2. 2.
    J. Shen, L. Zhou, and T. Li: Oxid. Met., 1997, vol. 48, pp. 347–56.CrossRefGoogle Scholar
  3. 3.
    H.E. McCoy: Corrosion, 1965, vol. 21, pp. 84–94.CrossRefGoogle Scholar
  4. 4.
    Z. Zeng, K. Natesan, Z. Cai, D. Gosztola, R. Cook, and J. Hiller: J. Mater. Eng. Perf., 2014, vol. 23, pp. 1247–62.CrossRefGoogle Scholar
  5. 5.
    D. Fleig, K. Andersson, F. Normann, and F. Johnsson: Ind. Eng. Chem. Res., 2011, vol. 50, pp. 8505–14.CrossRefGoogle Scholar
  6. 6.
    Z. Zurek, J. Gilewicz-Wolter, M. Hetmanczyk, J. Dudala, and A. Stawiarski: Oxid. Met., 2012, vol: 78, pp. 1–16.CrossRefGoogle Scholar
  7. 7.
    R. Stanger, and T. Wall: Prog. Ener. Combust. Sci., 2011, Vol. 37, pp. 69–88.CrossRefGoogle Scholar
  8. 8.
    A.U. Syed, N.J. Simms, and J.E. Oakey: Fuel, 2012, vol. 101, pp. 62–73.CrossRefGoogle Scholar
  9. 9.
    N. Otsuka: Mater. Sci. Forum, 2011, vol. 696, pp. 206–11.CrossRefGoogle Scholar
  10. 10.
    B.A. Baker, and G.D. Smith: NACE annual conference, 2004, Paper 04526.Google Scholar
  11. 11.
    H. Hack, and G. Stanko: Advances in Materials Technology for Fossil Power Plants, ASM International, Materials Park, 2008, pp. 488–506.Google Scholar
  12. 12.
    M.S. Gagliano, H. Hack, and G. Stanko: 33rd international technical conference on coal utilization and fuel systems, 2008.Google Scholar
  13. 13.
    P. Castello, V. Guttmann, N. Farr, and G. Smith: Mater. Corros., 2000, vol. 51, pp. 786–90.CrossRefGoogle Scholar
  14. 14.
    J.L. Blough, and G.J. Stanko: NACE International, Corrosion, 1997, Paper No. 140.Google Scholar
  15. 15.
    S. Henry, A. Galerie, and L. Antonic: Mater. Sci. Forum, 1999, vol. 353, pp. 369–72.Google Scholar
  16. 16.
    S. Zhao, X. Xie, G.D. Smith, and S.J. Patel: Mater. Chem. Phys., 2005, vol. 90, pp. 27581.CrossRefGoogle Scholar
  17. 17.
    J.M. Brossard, I. Diop, X. Chaucherie, F. Nicol, C. Rapin, and M. Vilasi: Mater. Corros., 2011, vol. 62, pp. 543–48.CrossRefGoogle Scholar
  18. 18.
    Z. Zeng, K. Natesan, Z. Cai, and D.L. Rink: Fuel, 2014, vol. 117, pp. 133–45.CrossRefGoogle Scholar
  19. 19.
    G.R. Holcomb, J. Tylczak, G. H. Meier, B.S. Lutz, K. Jung, N. Mu, N.M. Yanar, F.S. Pettit, J. Zhu, A. Wise, D.E. Laughlin, and S. Sridhar: Oxid. Met., 2013, vol. 80, pp. 599–610.CrossRefGoogle Scholar
  20. 20.
    N.N. Aung and X. Liu, Corros. Sci., 2014, vol. 82, pp. 227–38.CrossRefGoogle Scholar
  21. 21.
    K. Natesan, Z. Zeng, and D.L. Rink: Proceedings of the 24rd annual conference on fossil energy materials, 2010.Google Scholar
  22. 22.
    K. Natesan, Z. Zeng, and D.L. Rink: Proceedings of the 25th annual conference on fossil energy materials, 2011.Google Scholar
  23. 23.
    K. Natesan, and Z. Zeng: Proceedings of 26th annual conference on fossil energy materials, 2012.Google Scholar
  24. 24.
    G. Stein-Brzozowska, J. Maier, and G. Scheffknecht, Ener. Procedia 2011, vol. 4, pp. 2035–42.CrossRefGoogle Scholar
  25. 25.
    B.S. Lutz, G.R. Holcomb, G.H. Meier, Oxid. Met., 2015, Vol. 84, pp. 353-381.CrossRefGoogle Scholar
  26. 26.
    T. Dudziak, T. Hussain, N.J. Simms, et al. Corr. Sci., 2014, Vol. 79, pp. 184–191.CrossRefGoogle Scholar
  27. 27.
    G. Stein-Brzozowska, H. Diaz, J. Maier, et al. Energy Procedia, 2013, Vol. 37, pp. 1462–70.CrossRefGoogle Scholar
  28. 28.
    L. Elliott, T. Wall, S. Khan, R. Rathnam, Y. Liu, and R. Gupta: ACARP, University of Newcastle, Callaghan, 2006.Google Scholar
  29. 29.
    T. Suko, T. Yamada, M. Tamura, and T. Fujimori: Pilot Scale Studies to Support Oxy-fuel Feasibility, Cooperative Research Center for Coal in Sustainable Development, 2006.Google Scholar
  30. 30.
    S. Schnurrer, L. Elliott, and T. Wall: 7th International symposium on gas cleaning at high temperatures, Shoal Bay, 2008.Google Scholar
  31. 31.
    A. Robertson, H. Agarwal, M. Gagliano, and A. Seltzer, 37th international technical conference on clean coal and fuel systems, Clearwater, 2012.Google Scholar
  32. 32.
    D. K. Louic, P. Eng. Handbook of Sulphuric acid manufacturing, DKL Engineering, Inc., Richmond Hill, 2005.Google Scholar
  33. 33.
    Z. Zeng, K. Natesan, Z. Cai, and S.B. Darling, Nature Mater., 2008, vol. 7, pp. 641–6.CrossRefGoogle Scholar
  34. 34.
    M. Benlyamani, F. Ajersch, and G. Kennedy: Oxid. Met., 1988, vol. 29, pp. 203.CrossRefGoogle Scholar
  35. 35.
    E.J. Badin: Coal Combustion Chemistry: Corrosion Aspects, Elsevier, Amsterdam, 1984.Google Scholar
  36. 36.
    Babcock & Wilcox Co., Steam: Its Generation and Use, Babcock & Wilcox Co., New York, 1978.Google Scholar
  37. 37.
    A. Kucuk and M.S. Gulaboglu: Ind. Eng. Chem. Res., 2002, vol. 41, pp. 6028–32.CrossRefGoogle Scholar
  38. 38.
    W.W. Rudolph, R. Mason, and P. Schmidt: Eur. J. Miner., 2003, vol. 15, pp. 913–24.CrossRefGoogle Scholar
  39. 39.
    H. Zhou, J. Wang, and B. Zhou, Energy Fuels, 2015, vol. 29, pp 5519–33.CrossRefGoogle Scholar
  40. 40.
    Brunner D. R. The Composition and Distribution of Coal-Ash Deposits Under Reducing and Oxidizing Conditions From a Suite of Eight Coals, thesis of Brigham Young University, 2011.Google Scholar
  41. 41.
    H. Liu, S. Katagiri, and K. Okazaki, Energy & Fuels, 2001, vol. 15, pp. 403–12.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Zuotao Zeng
    • 1
    Email author
  • Ken Natesan
    • 1
  • Zhonghou Cai
    • 2
  • David L. Rink
    • 1
  1. 1.Nuclear Engineering DivisionArgonne National LaboratoryLemontUSA
  2. 2.Advanced Photon SourceArgonne National LaboratoryLemontUSA

Personalised recommendations