Skip to main content
Log in

X-ray Microprobe Investigation of Iron During a Simulated Silicon Feedstock Extraction Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Elemental silicon is extracted through carbothermic reduction from silicon-bearing raw feedstock materials such as quartz and quartzites. We investigate the micron-scale distribution and valence state of iron, a deleterious impurity in several iron-sensitive applications, in hydrothermal quartz samples of industrial relevance during a laboratory-scale simulated reduction process. We use X-ray diffraction to inspect the quartz structural change and synchrotron-based microprobe techniques to monitor spatial distribution and oxidation state of iron. In the untreated quartz, most of the iron is embedded in foreign minerals, both as ferric (Fe3+, e.g., in muscovite) and ferrous (Fe2+, e.g., as in biotite) iron. Upon heating the quartz to 1273 K (1000 °C) under industrial-like conditions in a CO(g) environment, iron is found in ferrous (Fe2+) particles. At this temperature, its chemical state is influenced by mineral decomposition and melting processes, whereas at higher temperatures it is influenced by the silicate melts. As the quartz grains partially transform to cristobalite 1873 K (1600 °C), iron diffuses towards liquid–solid interfaces forming ferrous clusters. Silica is liquid at 2173 K (1900 °C) and the iron migrates towards the interfaces between gas phases and the silicate liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. These include Fe(II) phosphate, sarcopside, Fe(III) phosphate hydrate, montmorillonite_StX-1, kaolinite_KGa-1b, Na-montmorillonite_SWY-2 and jarosite.

References

  1. B. Ceccaroli, and O. Lohne: in Handbook of Photovoltaic Science and Engineering, A. Luque, and S. Hegedus, eds., Wiley, 2003.

  2. A. Schei, J.K. Tuset and H. Tveit: Production of High Silicon Alloys, Tapir Vorlag, Trondheim, Norway, 1997.

    Google Scholar 

  3. E.H. Myrhaug: Non-fossil reduction materials in the silicon process - properties and behaviour Norwegian University of Science and Technology, Trondheim, Norway, 2003.

    Google Scholar 

  4. K. Aasly: Properties and behavior of quartz for the silicon process, Norwegian University of Science and Technology, Trondheim, Norway, 2008.

    Google Scholar 

  5. R. Haus, S. Prinz, and C. Priess: in Quartz: Deposits, Mineralogy and Analytics, J. Götze, and R. Möckel, eds., Springer, Berlin, 2012, pp. 29–51.

  6. M.F.M. dos Santos, E. Fujiwara, E.A. Schenkel, J. Enzweiler and C.K. Suzuki: J. South Am. Earth Sci. 2014, vol. 56, pp. 328-338.

    Article  Google Scholar 

  7. T. Buonassisi, A.A. Istratov, M.D. Pickett, M. Heuer, J.P. Kalejs, G. Hahn, M.A. Marcus, B. Lai, Z. Cai, S.M. Heald, T.F. Ciszek, R.F. Clark, D.W. Cunningham, A.M. Gabor, R. Jonczyk, S. Narayanan, E. Sauar and E.R. Weber: Prog. Photovoltaics 2006, vol. 14, pp. 512-531.

    Article  Google Scholar 

  8. G. Coletti, R. Kvande, V.D. Mihailetchi, L.J. Geerligs, L. Arnberg and E.J. Ovrelid: J. Appl. Phys. 2008, vol. 104, p. 104913.

    Article  Google Scholar 

  9. D. Macdonald, and J. Tan: Impurities in Solar-Grade Silicon, Device and Process Technologies for Microelectronics, MEMS, Photonics, and Nanotechnology IV, Proceedings of the SPIE, Canberra, ACT, Australia, 2007, p. 68000X.

  10. A.A. Istratov, T. Buonassisi, M.D. Pickett, M. Heuer and E.R. Weber: Mater. Sci. Eng., B 2006, vol. 134, pp. 282-286.

    Article  Google Scholar 

  11. G. Coletti, P.C.P. Bronsveld, G. Hahn, W. Warta, D. Macdonald, B. Ceccaroli, K. Wambach, N. Le Quang and J.M. Fernandez: Adv. Funct. Mater. 2011, vol. 21, pp. 879-890.

    Article  Google Scholar 

  12. J. Hofstetter, J.F. Lelièvre, C. del Cañizo and A. Luque: Mater. Sci. Eng., B 2009, vol. 159-160, pp. 299-304.

    Article  Google Scholar 

  13. J.R. Davis, Jr., A. Rohatgi, R.H. Hopkins, P.D. Blais, P. Rai-Choudhury, J.R. McCormick and H.C. Mollenkopf: IEEE Trans. Electron Devices 1980, vol. 27, pp. 677-687.

    Article  Google Scholar 

  14. K. Tang, E. Øvrelid, G. Tranell and M. Tangstad: JOM 2009, vol. 61, pp. 49-55.

    Article  Google Scholar 

  15. K. Tang, E.J. Øvrelid, G. Tranell, and M. Tangstad: in Crystal Growth of Si for Solar Cells, K. Nakajima and N. Usami, eds., Springer, Berlin, 2009, pp. 219–51.

  16. A.E. Morishige, H.S. Laine, J. Schoen, J. Hofstetter, A. Haarahiltunen, M.C. Schubert, H. Savin, and T. Buonassisi: Analysis of Different Models of Iron Precipitation in Multicrystalline Silicon, Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, 2014, pp. 3008–10.

  17. M.C. Schubert, M. Padilla, B. Michl, L. Mundt, J. Giesecke, J. Hohl-Ebinger, J. Benick, W. Warta, M. Tajima and A. Ogura: Sol. Energy Mater. Sol. Cells 2015, vol. 138, pp. 96-101.

    Article  Google Scholar 

  18. F. Danes, E. Saint-Aman and L. Coudurier: J. Mater. Sci. 1993, vol. 28, pp. 489-495.

    Article  Google Scholar 

  19. N. Jacobson and E. Opila: Metall. Mater. Trans. A 1993, vol. 24, pp. 1212-1214.

    Article  Google Scholar 

  20. M. Nagamori, I. Malinsky and A. Claveau: Metall. Mater. Trans. B 1986, vol. 17, pp. 503-514.

    Article  Google Scholar 

  21. K. Wiik: Kinetics of Reactions Between Silica and Carbon, Norges Tekniske Høgskole, Trondheim, 1990, p. 220.

    Google Scholar 

  22. V. Andersen: Reaction Mechanism and Kinetics of the High Temperature Reactions in the Silicon Process, Norwegian University of Science and Technology, Trondheim, 2010, p. 89.

    Google Scholar 

  23. M. Andersson: Reaction Mechanisms in the Ferrosilicon Production Process: Results from an Industrial Furnace Excavation, Luleå University of Technology, Luleå, 2009, p. 207.

    Google Scholar 

  24. D.H. Filsinger and D.B. Bourrie: J. Am. Ceram. Soc. 1990, vol. 73, pp. 1726-1732.

    Article  Google Scholar 

  25. H. Tveit, T. Halland, K.-I. Landrø, S.T. Johansen, and B. Ravary: The Tapping Process in Silicon Production, Silicon for the Chemical Industry VI, Loen, 2002, pp. 39–46.

    Google Scholar 

  26. M. Kadkhodabeigi, H. Tveit, and S.T. Johansen: in Seventh International Conference on CFD in the Minerals and Process Industries, Melbourne, 2009.

  27. T. Rosenqvist and J. Tuset: Metall. Mater. Trans. B 1987, vol. 18, pp. 471-472.

    Article  Google Scholar 

  28. E.R. Weber: Appl. Phys. A 1983, vol. 30, pp. 1-22.

    Article  Google Scholar 

  29. S. Bernardis, B.K. Newman, M. Di Sabatino, S.C. Fakra, M.I. Bertoni, D.P. Fenning, R.B. Larsen and T. Buonassisi: Prog. Photovoltaics 2012, vol. 20, pp. 217-225.

    Article  Google Scholar 

  30. R.B. Larsen, M. Polvé and G. Juve: Norges Geologiske Undersøkelse Bulletin 2000, vol. 436, pp. 57–65.

    Google Scholar 

  31. R.B. Larsen, F. Jacamon and A. Kronz: Mineral. Mag. 2009, vol. 73, pp. 691-707.

    Article  Google Scholar 

  32. R.B. Larsen, I. Henderson, P.M. Ihlen and F. Jacamon: Contrib. Mineral. Petrol. 2004, vol. 147, pp. 615-628.

    Article  Google Scholar 

  33. K. Graff: Metal Impurities in Silicon-Device Fabrication, 2nd ed., Springer, Berlin, 1995.

    Book  Google Scholar 

  34. A.A. Istratov, H. Hieslmair and E.R. Weber: Appl. Phys. A 1999, vol. 69, pp. 13-44.

    Article  Google Scholar 

  35. S.A. McHugo, A.C. Thompson, A. Mohammed, G. Lamble, I. Perichaud, S. Martinuzzi, M. Werner, M. Rinio, W. Koch, H.-U. Hoefs and C. Haessler: J. Appl. Phys. 2001, vol. 89, pp. 4282-4288.

    Article  Google Scholar 

  36. V. Andersen: Investigation of thermal properties of quartz for the silicon industry under reducing atmosphere, Norwegian University of Science and Technology, Trondheim, Norway, 2009.

    Google Scholar 

  37. E. DalMartello, G. Tranell, S. Gaal, O.S. Raaness, K. Tang, and L. Arnberg: Metall. Mater. Trans. B, 2011, vol. 42, pp. 939–950.

    Article  Google Scholar 

  38. M.A. Marcus, A.A. MacDowell, R. Celestre, A. Manceau, T. Miller, H.A. Padmore and R.E. Sublett: J. Synchrotron Radiat. 2004, vol. 11, pp. 239-247.

    Article  Google Scholar 

  39. S. Kraft, J. Stuempel, P. Becker and U. Kuetgens: Rev. Sci. Instrum. 1996, vol. 67, pp. 681-687.

    Article  Google Scholar 

  40. S.D. Kelly, D. Hesterberg, and B. Ravel: in Methods of Soil Analysis, Part 5—Mineralogical Methods, A.L. Ulery, and L.R. Drees, eds., Soil Science Society of America, Madison, WI, 2008, pp. 367–464.

  41. M.A. Marcus, A.J. Westphal and S.C. Fakra: J. Synchrotron Radiat. 2008, vol. 15, pp. 463-468.

    Article  Google Scholar 

  42. M. Wilke, F. Farges, P.-E. Petit, G.E. Brown, Jr. and F. Martin: Am. Mineral. 2001, vol. 86, pp. 714-730.

    Article  Google Scholar 

  43. A.J. Westphal and et al.: Astrophys. J. 2009, vol. 694, p. 18.

    Article  Google Scholar 

  44. A. Manceau, M.A. Marcus and N. Tamura: Rev. Mineral. Geochem. 2002, vol. 49, pp. 341-428.

    Article  Google Scholar 

  45. A.C. Scheinost, A. Rossberg, M. Marcus, S. Pfister and R. Kretzschmar: Phys. Scr. 2005, vol. 2005, p. 1038.

    Article  Google Scholar 

  46. V. Swamy, S.K. Saxena, B. Sundman and J. Zhang: J. Geophys. Res. 1994, vol. 99, pp. 11787-11794.

    Article  Google Scholar 

  47. M. Ghiorso, I. Carmichael and L. Moret: Contrib. Mineral. Petrol. 1979, vol. 68, pp. 307-323.

    Article  Google Scholar 

  48. S. Stevens, R. Hand and J. Sharp: J. Mater. Sci. 1997, vol. 32, pp. 2929-2935.

    Article  Google Scholar 

  49. N.G. Ainslie, J.D. Mackenzie and D. Turnbull: J. Phys. Chem. 1961, vol. 65, pp. 1718-1724.

    Article  Google Scholar 

  50. D.R. Uhlmann: J. Non-Cryst. Solids 1980, vol. 41, pp. 347-357.

    Article  Google Scholar 

  51. G. Scherer, P.J. Vergano, and D.R. Uhlmann: Phys. Chem. Glasses 1970, vol. 11, pp. 53–58.

    Google Scholar 

  52. N.G. Ainslie, C.R. Morelock, and D. Turnbull: in Symposium on Nucleation and Crystallization in Glasses and Melts, American Chemical Society, 1962, pp. 97–107.

  53. D. Turnbull and M.H. Cohen: The Journal of Chemical Physics 1958, vol. 29, pp. 1049-1054.

    Article  Google Scholar 

  54. E. DalMartello, S. Bernardis, R.B. Larsen, G. Tranell, M. Di Sabatino, and L. Arnberg: Powder Technol. 2012, vol. 224, pp. 209–216.

    Article  Google Scholar 

  55. B.J. Rao and A.R. Chetal: J. Phys. D: Appl. Phys. 1982, vol. 15, p. L195.

    Article  Google Scholar 

  56. D.C. Jain, U. Chandra, K.B. Gard, and B.K. Sharma: J. Phys. D: Appl. Phys. 1980, vol. 13, p. 1113.

    Article  Google Scholar 

  57. B.W. Evans: Am. J. Sci. 1965, vol. 263, pp. 647-667.

    Article  Google Scholar 

  58. D.G. Rancourt, P. Tume and A.E. Lalonde: Phys. Chem. Miner. 1993, vol. 20, pp. 276-284.

    Article  Google Scholar 

  59. T. Hammouda and M. Pichavant: Eur. J. Mineral. 1999, vol. 11, pp. 637-653.

    Article  Google Scholar 

  60. E. DalMartello, G. Tranell, O. Ostrovski, G. Zhang, O. Raaness, R. Larsen, K. Tang and P. Koshy: Metall. Mater. Trans. B 2013, vol. 44, pp. 233–243.

    Article  Google Scholar 

  61. M. Hillert and X. Wang: Calphad 1989, vol. 13, pp. 253-266.

    Article  Google Scholar 

  62. A.B. Thompson, M. Aerts and A.C. Hack: Rev. Mineral. Geochem. 2007, vol. 65, pp. 99-127.

    Article  Google Scholar 

  63. H. Ohmoto and D.M. Kerrick: Am. J. Sci. 1977, vol. 277, pp. 1013-1044.

    Article  Google Scholar 

  64. S. Jakobsson and N. Oskarsson: Geochim. Cosmochim. Acta 1994, vol. 58, pp. 9-17.

    Article  Google Scholar 

Download references

Acknowledgments

This work is part of S. Bernardis, Engineering impurity behaviour on the micron scale in the metallurgical-grade silicon production, Doctoral Thesis, Massachusetts Institute of Technology (2012), http://hdl.handle.net/1721.1/101457. The authors thank A. Müller for geological insights; D. Dyar for XANES discussions; and J. Safarian for thermodynamic insights; S. Gaal is acknowledged for experimental support and discussions. M.A. Marcus is thanked for experimental support at the Advanced Light Source. Support for this research was provided by U.S. Department of Energy under Contract Number DE-FG36-09GO19001; the BASIC Project, Norwegian Research Council, under Contract Number 191285/V30; and through the generous support of the Chesonis Family Foundation. S.B. acknowledges the support of the Leiv Eiriksson mobility program through the Norwegian Research Council. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Bernardis.

Additional information

Manuscript submitted October 9, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardis, S., Fakra, S.C., Dal Martello, E. et al. X-ray Microprobe Investigation of Iron During a Simulated Silicon Feedstock Extraction Process. Metall Mater Trans B 47, 3565–3574 (2016). https://doi.org/10.1007/s11663-016-0795-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0795-6

Keywords

Navigation