Metallurgical and Materials Transactions B

, Volume 47, Issue 6, pp 3565–3574 | Cite as

X-ray Microprobe Investigation of Iron During a Simulated Silicon Feedstock Extraction Process

  • Sarah Bernardis
  • Sirine C. Fakra
  • Elena Dal Martello
  • Rune B. Larsen
  • Bonna K. Newman
  • David P. Fenning
  • Marisa Di Sabatino
  • Tonio Buonassisi


Elemental silicon is extracted through carbothermic reduction from silicon-bearing raw feedstock materials such as quartz and quartzites. We investigate the micron-scale distribution and valence state of iron, a deleterious impurity in several iron-sensitive applications, in hydrothermal quartz samples of industrial relevance during a laboratory-scale simulated reduction process. We use X-ray diffraction to inspect the quartz structural change and synchrotron-based microprobe techniques to monitor spatial distribution and oxidation state of iron. In the untreated quartz, most of the iron is embedded in foreign minerals, both as ferric (Fe3+, e.g., in muscovite) and ferrous (Fe2+, e.g., as in biotite) iron. Upon heating the quartz to 1273 K (1000 °C) under industrial-like conditions in a CO(g) environment, iron is found in ferrous (Fe2+) particles. At this temperature, its chemical state is influenced by mineral decomposition and melting processes, whereas at higher temperatures it is influenced by the silicate melts. As the quartz grains partially transform to cristobalite 1873 K (1600 °C), iron diffuses towards liquid–solid interfaces forming ferrous clusters. Silica is liquid at 2173 K (1900 °C) and the iron migrates towards the interfaces between gas phases and the silicate liquid.


Fluid Inclusion Carbothermic Reduction Foreign Mineral Metallic Impurity Hydrothermal Quartz 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is part of S. Bernardis, Engineering impurity behaviour on the micron scale in the metallurgical-grade silicon production, Doctoral Thesis, Massachusetts Institute of Technology (2012), The authors thank A. Müller for geological insights; D. Dyar for XANES discussions; and J. Safarian for thermodynamic insights; S. Gaal is acknowledged for experimental support and discussions. M.A. Marcus is thanked for experimental support at the Advanced Light Source. Support for this research was provided by U.S. Department of Energy under Contract Number DE-FG36-09GO19001; the BASIC Project, Norwegian Research Council, under Contract Number 191285/V30; and through the generous support of the Chesonis Family Foundation. S.B. acknowledges the support of the Leiv Eiriksson mobility program through the Norwegian Research Council. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231.


  1. 1.
    B. Ceccaroli, and O. Lohne: in Handbook of Photovoltaic Science and Engineering, A. Luque, and S. Hegedus, eds., Wiley, 2003.Google Scholar
  2. 2.
    A. Schei, J.K. Tuset and H. Tveit: Production of High Silicon Alloys, Tapir Vorlag, Trondheim, Norway, 1997.Google Scholar
  3. 3.
    E.H. Myrhaug: Non-fossil reduction materials in the silicon process - properties and behaviour Norwegian University of Science and Technology, Trondheim, Norway, 2003.Google Scholar
  4. 4.
    K. Aasly: Properties and behavior of quartz for the silicon process, Norwegian University of Science and Technology, Trondheim, Norway, 2008.Google Scholar
  5. 5.
    R. Haus, S. Prinz, and C. Priess: in Quartz: Deposits, Mineralogy and Analytics, J. Götze, and R. Möckel, eds., Springer, Berlin, 2012, pp. 29–51.Google Scholar
  6. 6.
    M.F.M. dos Santos, E. Fujiwara, E.A. Schenkel, J. Enzweiler and C.K. Suzuki: J. South Am. Earth Sci. 2014, vol. 56, pp. 328-338.CrossRefGoogle Scholar
  7. 7.
    T. Buonassisi, A.A. Istratov, M.D. Pickett, M. Heuer, J.P. Kalejs, G. Hahn, M.A. Marcus, B. Lai, Z. Cai, S.M. Heald, T.F. Ciszek, R.F. Clark, D.W. Cunningham, A.M. Gabor, R. Jonczyk, S. Narayanan, E. Sauar and E.R. Weber: Prog. Photovoltaics 2006, vol. 14, pp. 512-531.CrossRefGoogle Scholar
  8. 8.
    G. Coletti, R. Kvande, V.D. Mihailetchi, L.J. Geerligs, L. Arnberg and E.J. Ovrelid: J. Appl. Phys. 2008, vol. 104, p. 104913.CrossRefGoogle Scholar
  9. 9.
    D. Macdonald, and J. Tan: Impurities in Solar-Grade Silicon, Device and Process Technologies for Microelectronics, MEMS, Photonics, and Nanotechnology IV, Proceedings of the SPIE, Canberra, ACT, Australia, 2007, p. 68000X.Google Scholar
  10. 10.
    A.A. Istratov, T. Buonassisi, M.D. Pickett, M. Heuer and E.R. Weber: Mater. Sci. Eng., B 2006, vol. 134, pp. 282-286.CrossRefGoogle Scholar
  11. 11.
    G. Coletti, P.C.P. Bronsveld, G. Hahn, W. Warta, D. Macdonald, B. Ceccaroli, K. Wambach, N. Le Quang and J.M. Fernandez: Adv. Funct. Mater. 2011, vol. 21, pp. 879-890.CrossRefGoogle Scholar
  12. 12.
    J. Hofstetter, J.F. Lelièvre, C. del Cañizo and A. Luque: Mater. Sci. Eng., B 2009, vol. 159-160, pp. 299-304.CrossRefGoogle Scholar
  13. 13.
    J.R. Davis, Jr., A. Rohatgi, R.H. Hopkins, P.D. Blais, P. Rai-Choudhury, J.R. McCormick and H.C. Mollenkopf: IEEE Trans. Electron Devices 1980, vol. 27, pp. 677-687.CrossRefGoogle Scholar
  14. 14.
    K. Tang, E. Øvrelid, G. Tranell and M. Tangstad: JOM 2009, vol. 61, pp. 49-55.CrossRefGoogle Scholar
  15. 15.
    K. Tang, E.J. Øvrelid, G. Tranell, and M. Tangstad: in Crystal Growth of Si for Solar Cells, K. Nakajima and N. Usami, eds., Springer, Berlin, 2009, pp. 219–51.Google Scholar
  16. 16.
    A.E. Morishige, H.S. Laine, J. Schoen, J. Hofstetter, A. Haarahiltunen, M.C. Schubert, H. Savin, and T. Buonassisi: Analysis of Different Models of Iron Precipitation in Multicrystalline Silicon, Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, 2014, pp. 3008–10.Google Scholar
  17. 17.
    M.C. Schubert, M. Padilla, B. Michl, L. Mundt, J. Giesecke, J. Hohl-Ebinger, J. Benick, W. Warta, M. Tajima and A. Ogura: Sol. Energy Mater. Sol. Cells 2015, vol. 138, pp. 96-101.CrossRefGoogle Scholar
  18. 18.
    F. Danes, E. Saint-Aman and L. Coudurier: J. Mater. Sci. 1993, vol. 28, pp. 489-495.CrossRefGoogle Scholar
  19. 19.
    N. Jacobson and E. Opila: Metall. Mater. Trans. A 1993, vol. 24, pp. 1212-1214.CrossRefGoogle Scholar
  20. 20.
    M. Nagamori, I. Malinsky and A. Claveau: Metall. Mater. Trans. B 1986, vol. 17, pp. 503-514.CrossRefGoogle Scholar
  21. 21.
    K. Wiik: Kinetics of Reactions Between Silica and Carbon, Norges Tekniske Høgskole, Trondheim, 1990, p. 220.Google Scholar
  22. 22.
    V. Andersen: Reaction Mechanism and Kinetics of the High Temperature Reactions in the Silicon Process, Norwegian University of Science and Technology, Trondheim, 2010, p. 89.Google Scholar
  23. 23.
    M. Andersson: Reaction Mechanisms in the Ferrosilicon Production Process: Results from an Industrial Furnace Excavation, Luleå University of Technology, Luleå, 2009, p. 207.Google Scholar
  24. 24.
    D.H. Filsinger and D.B. Bourrie: J. Am. Ceram. Soc. 1990, vol. 73, pp. 1726-1732.CrossRefGoogle Scholar
  25. 25.
    H. Tveit, T. Halland, K.-I. Landrø, S.T. Johansen, and B. Ravary: The Tapping Process in Silicon Production, Silicon for the Chemical Industry VI, Loen, 2002, pp. 39–46.Google Scholar
  26. 26.
    M. Kadkhodabeigi, H. Tveit, and S.T. Johansen: in Seventh International Conference on CFD in the Minerals and Process Industries, Melbourne, 2009.Google Scholar
  27. 27.
    T. Rosenqvist and J. Tuset: Metall. Mater. Trans. B 1987, vol. 18, pp. 471-472.CrossRefGoogle Scholar
  28. 28.
    E.R. Weber: Appl. Phys. A 1983, vol. 30, pp. 1-22.CrossRefGoogle Scholar
  29. 29.
    S. Bernardis, B.K. Newman, M. Di Sabatino, S.C. Fakra, M.I. Bertoni, D.P. Fenning, R.B. Larsen and T. Buonassisi: Prog. Photovoltaics 2012, vol. 20, pp. 217-225.CrossRefGoogle Scholar
  30. 30.
    R.B. Larsen, M. Polvé and G. Juve: Norges Geologiske Undersøkelse Bulletin 2000, vol. 436, pp. 57–65.Google Scholar
  31. 31.
    R.B. Larsen, F. Jacamon and A. Kronz: Mineral. Mag. 2009, vol. 73, pp. 691-707.CrossRefGoogle Scholar
  32. 32.
    R.B. Larsen, I. Henderson, P.M. Ihlen and F. Jacamon: Contrib. Mineral. Petrol. 2004, vol. 147, pp. 615-628.CrossRefGoogle Scholar
  33. 33.
    K. Graff: Metal Impurities in Silicon-Device Fabrication, 2nd ed., Springer, Berlin, 1995.CrossRefGoogle Scholar
  34. 34.
    A.A. Istratov, H. Hieslmair and E.R. Weber: Appl. Phys. A 1999, vol. 69, pp. 13-44.CrossRefGoogle Scholar
  35. 35.
    S.A. McHugo, A.C. Thompson, A. Mohammed, G. Lamble, I. Perichaud, S. Martinuzzi, M. Werner, M. Rinio, W. Koch, H.-U. Hoefs and C. Haessler: J. Appl. Phys. 2001, vol. 89, pp. 4282-4288.CrossRefGoogle Scholar
  36. 36.
    V. Andersen: Investigation of thermal properties of quartz for the silicon industry under reducing atmosphere, Norwegian University of Science and Technology, Trondheim, Norway, 2009.Google Scholar
  37. 37.
    E. DalMartello, G. Tranell, S. Gaal, O.S. Raaness, K. Tang, and L. Arnberg: Metall. Mater. Trans. B, 2011, vol. 42, pp. 939–950.CrossRefGoogle Scholar
  38. 38.
    M.A. Marcus, A.A. MacDowell, R. Celestre, A. Manceau, T. Miller, H.A. Padmore and R.E. Sublett: J. Synchrotron Radiat. 2004, vol. 11, pp. 239-247.CrossRefGoogle Scholar
  39. 39.
    S. Kraft, J. Stuempel, P. Becker and U. Kuetgens: Rev. Sci. Instrum. 1996, vol. 67, pp. 681-687.CrossRefGoogle Scholar
  40. 40.
    S.D. Kelly, D. Hesterberg, and B. Ravel: in Methods of Soil Analysis, Part 5—Mineralogical Methods, A.L. Ulery, and L.R. Drees, eds., Soil Science Society of America, Madison, WI, 2008, pp. 367–464.Google Scholar
  41. 41.
    M.A. Marcus, A.J. Westphal and S.C. Fakra: J. Synchrotron Radiat. 2008, vol. 15, pp. 463-468.CrossRefGoogle Scholar
  42. 42.
    M. Wilke, F. Farges, P.-E. Petit, G.E. Brown, Jr. and F. Martin: Am. Mineral. 2001, vol. 86, pp. 714-730.CrossRefGoogle Scholar
  43. 43.
    A.J. Westphal and et al.: Astrophys. J. 2009, vol. 694, p. 18.CrossRefGoogle Scholar
  44. 44.
    A. Manceau, M.A. Marcus and N. Tamura: Rev. Mineral. Geochem. 2002, vol. 49, pp. 341-428.CrossRefGoogle Scholar
  45. 45.
    A.C. Scheinost, A. Rossberg, M. Marcus, S. Pfister and R. Kretzschmar: Phys. Scr. 2005, vol. 2005, p. 1038.CrossRefGoogle Scholar
  46. 46.
    V. Swamy, S.K. Saxena, B. Sundman and J. Zhang: J. Geophys. Res. 1994, vol. 99, pp. 11787-11794.CrossRefGoogle Scholar
  47. 47.
    M. Ghiorso, I. Carmichael and L. Moret: Contrib. Mineral. Petrol. 1979, vol. 68, pp. 307-323.CrossRefGoogle Scholar
  48. 48.
    S. Stevens, R. Hand and J. Sharp: J. Mater. Sci. 1997, vol. 32, pp. 2929-2935.CrossRefGoogle Scholar
  49. 49.
    N.G. Ainslie, J.D. Mackenzie and D. Turnbull: J. Phys. Chem. 1961, vol. 65, pp. 1718-1724.CrossRefGoogle Scholar
  50. 50.
    D.R. Uhlmann: J. Non-Cryst. Solids 1980, vol. 41, pp. 347-357.CrossRefGoogle Scholar
  51. 51.
    G. Scherer, P.J. Vergano, and D.R. Uhlmann: Phys. Chem. Glasses 1970, vol. 11, pp. 53–58.Google Scholar
  52. 52.
    N.G. Ainslie, C.R. Morelock, and D. Turnbull: in Symposium on Nucleation and Crystallization in Glasses and Melts, American Chemical Society, 1962, pp. 97–107.Google Scholar
  53. 53.
    D. Turnbull and M.H. Cohen: The Journal of Chemical Physics 1958, vol. 29, pp. 1049-1054.CrossRefGoogle Scholar
  54. 54.
    E. DalMartello, S. Bernardis, R.B. Larsen, G. Tranell, M. Di Sabatino, and L. Arnberg: Powder Technol. 2012, vol. 224, pp. 209–216.CrossRefGoogle Scholar
  55. 55.
    B.J. Rao and A.R. Chetal: J. Phys. D: Appl. Phys. 1982, vol. 15, p. L195.CrossRefGoogle Scholar
  56. 56.
    D.C. Jain, U. Chandra, K.B. Gard, and B.K. Sharma: J. Phys. D: Appl. Phys. 1980, vol. 13, p. 1113.CrossRefGoogle Scholar
  57. 57.
    B.W. Evans: Am. J. Sci. 1965, vol. 263, pp. 647-667.CrossRefGoogle Scholar
  58. 58.
    D.G. Rancourt, P. Tume and A.E. Lalonde: Phys. Chem. Miner. 1993, vol. 20, pp. 276-284.CrossRefGoogle Scholar
  59. 59.
    T. Hammouda and M. Pichavant: Eur. J. Mineral. 1999, vol. 11, pp. 637-653.CrossRefGoogle Scholar
  60. 60.
    E. DalMartello, G. Tranell, O. Ostrovski, G. Zhang, O. Raaness, R. Larsen, K. Tang and P. Koshy: Metall. Mater. Trans. B 2013, vol. 44, pp. 233–243.CrossRefGoogle Scholar
  61. 61.
    M. Hillert and X. Wang: Calphad 1989, vol. 13, pp. 253-266.CrossRefGoogle Scholar
  62. 62.
    A.B. Thompson, M. Aerts and A.C. Hack: Rev. Mineral. Geochem. 2007, vol. 65, pp. 99-127.CrossRefGoogle Scholar
  63. 63.
    H. Ohmoto and D.M. Kerrick: Am. J. Sci. 1977, vol. 277, pp. 1013-1044.CrossRefGoogle Scholar
  64. 64.
    S. Jakobsson and N. Oskarsson: Geochim. Cosmochim. Acta 1994, vol. 58, pp. 9-17.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Sarah Bernardis
    • 1
    • 2
  • Sirine C. Fakra
    • 3
  • Elena Dal Martello
    • 4
    • 5
  • Rune B. Larsen
    • 6
  • Bonna K. Newman
    • 1
    • 7
  • David P. Fenning
    • 1
    • 8
  • Marisa Di Sabatino
    • 9
  • Tonio Buonassisi
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.French Commission for Atomic and Alternative Energies (CEA)Le Bourget du LacFrance
  3. 3.Lawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.Norwegian University of Science and TechnologyTrondheimNorway
  5. 5.BundeGruppen ASOsloNorway
  6. 6.Geology and Mineral Resources EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  7. 7.Energy research Centre of the Netherlands (ECN)PettenNetherlands
  8. 8.University of CaliforniaSan DiegoUSA
  9. 9.Materials Science and EngineeringNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations