Skip to main content
Log in

Fundamental Research on a New Process to Remove Al3+ as Potassium Alum during Lithium Extraction from Lepidolite

  • Technical Publication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Sulfuric acid method can effectively extract lithium from lepidolite. However, purification problems make the method still tough before being widely applied. Especially, a considerable amount of Al3+ is contained in leaching solution, which needs to be removed before Li2CO3 precipitation. Based on the characteristic that K+, Rb+, and Cs+ can form corresponding alums with Al3+, an alum crystallization method was introduced and applied in our research. The feasibility of this method was also verified by phase equilibrium investigations in Li2SO4-K2SO4-Al2(SO4)3-H2O and its subternary system, which were typical subsystems of leaching solution. The results showed that Al2(SO4)3 can form potassium alum (KAl(SO4)2·12H2O) with K2SO4 easily, while no alum or double salt was found between Li2SO4 and Al2(SO4)3. Although Li2SO4 can generate KLiSO4 with K2SO4, the crystallization of KAl(SO4)2·12H2O still has priority over KLiSO4 when K2SO4 concentration is relatively low. Therefore, aluminum probably can be removed by regulating the concentration of leaching solution located in the crystallization field of KAl(SO4)2·12H2O. Besides, the effects of controlling factors specifically temperature, pH, and molar ratio of K+/Al3+ (m (K+/Al3+)) on alum crystallization were investigated. The results indicated that lower temperature and the addition of K2SO4 can accelerate the removal of Al2(SO4)3 obviously. The alum crystallization method turned out to be effective such that about 78 pct of Al2(SO4)3 can be removed mainly as potassium alum (KAl(SO4)2·12H2O) at 278 K (5 °C) with m (K+/Al3+) at 0.9 and pH of 2. A slight loss of lithium was caused by entrainment during alum crystallization. This research can be a promising exploration to purify leaching solution of lepidolite or other aluminosilicates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. [1] M. Armand and J. M. Tarascon: Nature, 2008, vol. 451, pp. 652-657.

    Article  Google Scholar 

  2. [2] J. B. Goodenough and P. Kyu-Sung: J. Am. Chem. Soc., 2013, vol. 135, pp.1167-1176.

    Article  Google Scholar 

  3. [3] B. Renaud: Nat. Nanotechnol., 2014. vol. 9, pp. 572-573.

    Article  Google Scholar 

  4. [4] B. Scrosati and J. Garche: J. Power Sources, 2010, vol. 195, pp. 2419-2430.

    Article  Google Scholar 

  5. [5] J. M. Tarascon and M. Armand: Nature, 2001, vol. 414, pp. 359-367.

    Article  Google Scholar 

  6. USGS, US Geological Survey, Mineral Commodity Summaries—Lithium, 2013.

  7. [7] H. Vikström, S. Davidsson and M. Höök: Appl. Energ., 2013, vol.110, pp. 252-266.

    Article  Google Scholar 

  8. [8] P. W. Gruber, P. A. Medina, G. A. Keoleian, S. E. Kesler, M. P. Everson and T. J. Wallington: J. Ind. Ecol., 2011, vol. 15, pp.760-775.

    Article  Google Scholar 

  9. [9] S. E. Kesler, P. W. Gruber, P. A. Medina, G. A. Keoleian, M. P. Everson and T. J. Wallington: Ore Geol. Rev., 2012, vol. 48, pp.55-69.

    Article  Google Scholar 

  10. [10] L. I. Barbosa, G. Valente, R. P. Orosco and J. A. González: Miner. Eng., 2014, vol. 56, pp. 29-34.

    Article  Google Scholar 

  11. [11] C. Grosjean, P. H. Miranda, M. Perrin and P. Poggi: Renew. Sust. Energ. Rev., 2012, vol. 16, pp. 1735-1744.

    Article  Google Scholar 

  12. [12] J. W. An, D. J. Kang, K. T. Tran, M. J. Kim, T. Lim and T. Tran: Hydrometallurgy, 2012, vol. 117, pp. 64-70.

    Article  Google Scholar 

  13. [13] P. Meshram, B. D. Pandey and T. R. Mankhand: Hydrometallurgy, 2014, vol. 150, pp. 192-208.

    Article  Google Scholar 

  14. [14] L. F. Medina and M. M. A. A. El-Naggar: Metall. Mater. Trans. B, 1984, vol. 15, pp. 725-726.

    Article  Google Scholar 

  15. [15] T. T. Hien-Dinh, V. T. Luong, R. Gieré and T. Tran: Hydrometallurgy, 2015, vol.153, pp.154-159.

    Article  Google Scholar 

  16. [16] V. T. Luong, D. J. Kang, J. W. An, D. A. Dao, M. J. Kim and T. Tran: Hydrometallurgy, 2014, vol. 141, pp. 8-16.

    Article  Google Scholar 

  17. [17] V. T. Luong, D. J. Kang, J. W. An, M. J. Kim and T. Tran: Hydrometallurgy, 2013, vol. 134, pp. 54-61.

    Article  Google Scholar 

  18. [18] G. Kuang, H. Li, S. Hu, R. Jin, S. J. Liu and H. Guo: Hydrometallurgy, 2015, vol. 157, pp.214-218.

    Article  Google Scholar 

  19. [19] Q. X. Yan, X. H. Li, Z. X. Wang, J. X. Wang, H. J. GUO, Q. Y. Hu, W. J. Peng and X. F. Wu: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 1753-1759.

    Article  Google Scholar 

  20. [20] Q. X. Yan, X. H. Li, Z. L. Yin, Z. X. Wang, H. J. Guo, W. J. Peng and Q. Y. Hu: Hydrometallurgy, 2012, vol. 121, pp. 54-59.

    Article  Google Scholar 

  21. [21] Q. X. Yan, X. H. Li, Z. X. Wang, X. F. Wu, J. X. Wang, H. J. Guo, Q. Y. Hu and W. J. Peng: Int. J. Min. Process., 2012, vol. 110, pp.1-5.

    Article  Google Scholar 

  22. J. Jandová, P. Dvořák, J. Formánek and N. V. Hong: Hydrometallurgy, 2012, vols.119-120, pp. 73-76

    Article  Google Scholar 

  23. [23] L. P. Ogorodova, I. A. Kiseleva, L. V. Melchakova and T. N. Schuriga: Thermochim. Acta, 2005, vol. 435, pp. 68-70.

    Article  Google Scholar 

  24. [24] H. A. V. Straten, M. A. A. Schoonen and P. L. D. Bruyn: J. Colloid Interf. Sci., 1985, vol. 103, pp. 493–507.

    Article  Google Scholar 

  25. [25] J. T. Jia, Y. W. Zhang, S. Wu, C. S. Liao, C. H. Yan, J. Y. Liu, G. M. Deng and X. B. Rui: Chin. Rare Earths, 2001, vol. 22, pp. 10-13.

    Google Scholar 

  26. [26] Y. Ma and T. Zhu: Trans. Nonferrous Met. Soc. China, 1992, vol. 4, pp. 26-32.

    Google Scholar 

  27. [27] W. Zhang, Y. Huang, Y. Chen, S. H. Scott, L. C. Zhong and F. Zou: Fluid Phase Equilibr., 2014, vol. 363, pp. 55-58.

    Article  Google Scholar 

  28. [28] H. T. S. Britton: J. Chem. Soc. Trans., 1922, vol.121, pp. 982-986.

    Article  Google Scholar 

  29. [29] Y. Zeng, X. Lin, and X. Yu: J. Chem. Eng. Data, 2012, vol.57, pp. 3672-3676.

    Article  Google Scholar 

  30. H. Z. Tong: Handbook of Analytical Chemistry, Part I, Chemical Analysis,2nd ed., Chemical Industry Press, Beijing, BJ, 1996, pp. 2.

    Google Scholar 

Download references

Acknowledgments

The author sincerely thank the editor and anonymous reviewers for their helpful and precious reviews. Financial support from National Key Technology R&D Program of China during the 12th Five-year Plan Period (Grant No. 2012BAB10B02) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Kuang.

Additional information

Manuscript submitted March 15, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Kuang, G., Yang, JX. et al. Fundamental Research on a New Process to Remove Al3+ as Potassium Alum during Lithium Extraction from Lepidolite. Metall Mater Trans B 47, 3557–3564 (2016). https://doi.org/10.1007/s11663-016-0774-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0774-y

Keywords

Navigation