Metallurgical and Materials Transactions B

, Volume 47, Issue 5, pp 2889–2903 | Cite as

Thermodynamics Behavior of Germanium During Equilibrium Reactions between FeOx-CaO-SiO2-MgO Slag and Molten Copper

  • M. A. H. Shuva
  • M. A. Rhamdhani
  • G. A. Brooks
  • S. Masood
  • M. A. Reuter


The distribution ratio of germanium (Ge), \( L_{\text{Ge}}^{s/m} \) during equilibrium reactions between magnesia-saturated FeOx-CaO-SiO2 (FCS) slag and molten copper has been measured under oxygen partial pressures from 10−10 to 10−7 atm and at temperatures 1473 to 1623 K (1200 to 1350 °C). It was observed that the Ge distribution ratio increases with increasing oxygen partial pressure, and with decreasing temperature. It was also observed that the distribution ratio is strongly dependent on slag basicity. The distribution ratio was observed to increase with increasing optical basicity. At fixed CaO concentration in the slag, the distribution ratio was found to increase with increasing Fe/SiO2 ratio, tending to a plateau at \( L_{\text{Ge}}^{s/m} \) = 0.8. This behavior is consistent with the assessment of ionic bond fraction carried out in this study, and suggested the acidic nature of germanium oxide (GeO2) in the slag system studied. The characterisation results of the quenched slag suggested that Ge is present in the FeOx-CaO-SiO2-MgO slag predominantly as GeO2. At 1573 K (1300 °C) and \( p_{{{\text{O}}_{2} }} \) = 10−8 atm, the activity coefficient of GeO2 in the slag was calculated to be in the range of 0.24 to 1.50. The results from the current study suggested that less-basic slag, high operating temperature, and low oxygen partial pressure promote a low Ge distribution ratio. These conditions are desired for maximizing Ge recovery, for example, during pyrometallurgical processing of Ge-containing e-waste through secondary copper smelting. Overall, the thermodynamics data generated from this study can be used for process modeling purposes for improving recovery of Ge in primary and secondary copper smelting processes.


  1. 1.
    J. Scoyer, G. Helian and H.U. Wolf: Ullmann’s Encyclopaedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany, 2001, pp. 351–363.Google Scholar
  2. 2.
    R.R. Moskalyk: Minerals Enginereing, 2004, vol. 17, pp. 393-402.CrossRefGoogle Scholar
  3. 3.
    R. Holl, M. Kling, and E. Schroll: Ore Geology Review, 2007, vol. 30, pp. 145-80.CrossRefGoogle Scholar
  4. 4.
    L. Berstein: Geochim. Cosmochim. Acta, 1985, vol. 49 (11), pp. 2409 – 22.CrossRefGoogle Scholar
  5. 5.
    D.E. Guberman: USGS Mineral Commodity Profile-Germanium, Open File Report 2004-1218, USGS, 2015.Google Scholar
  6. 6.
    A. Anindya, D.R. Swinbourne, M.A. Reuter, and R.W. Matusewicz: Miner. Process. Extr. Metall., 2013, vol. 122 (3), pp. 165-73.CrossRefGoogle Scholar
  7. 7.
    A. Anindya, D.R. Swinbourne, M.A. Reuter, and R.W. Matusewicz: Miner. Process. Extr. Metall., 2013, vol. 123(1), pp. 43-52.CrossRefGoogle Scholar
  8. 8.
    R. Widmer, H. Oswald-Krapf and D. Sinha-Khetriwal: Environ. Impact Assess. Rev., 2005, vol. 25 (5), pp. 436-58.CrossRefGoogle Scholar
  9. 9.
    M. Reuter and I.V. Kojo: World of Metall-Erzmetall, 2004, 67(1), pp.5–12.Google Scholar
  10. 10.
    E. Worrell and M. Reuter: Handbook of Recycling, 1st Ed., Elseveir, Oxford, UK, 2014, pp. 85-94.Google Scholar
  11. 11.
    M. Firdaus, M.A. Rhamdhani, Y. Durandet, W.J. Rankin, K. McGregor: J. Sustainable Metallurgy, 2016, doi 10.1007/s40831-016-0045-9.Google Scholar
  12. 12.
    A. Khaliq, M.A. Rhamdhani, G.A. Brooks, and S. Masood: Resources, 3(1), 2014, pp.152-179.CrossRefGoogle Scholar
  13. 13.
    M.E. Schlesinger, M.J. King, K.C. Sole, W.G. Davenport: Extractive Metallurgy of Copper, 5th Ed, Elsevier, Oxford, UK, 2011.Google Scholar
  14. 14.
    C. Hageluken: World of Metall-Erzmetall, 2006, 59(3), pp. 152–61.Google Scholar
  15. 15.
    J. Cui and L. Zhang: J. Hazardous Material, 2008, vol.158, pp. 228-56.CrossRefGoogle Scholar
  16. 16.
    J. Cui and E. Forssberg: J. Hazardous Material, 2003, vol. 99 (3), pp. 243-63.CrossRefGoogle Scholar
  17. 17.
    M.A.H. Shuva, M.A. Rhamdhani, G.A. Brooks, S. Masood and M.A. Reuter: J. Clean. Prod., 2016, vol. 131, pp. 795-809.CrossRefGoogle Scholar
  18. 18.
    Y.S. Han, D.R. Swinbourne and J.H. Park: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2449-57.CrossRefGoogle Scholar
  19. 19.
    K. Yamaguchi: Proceedings. of Copper 2010, Hamburg, 2010, vol. 3 pp. 1287–95.Google Scholar
  20. 20.
    H. Heo, S.Park and J.H. Park: Metall. Mater. Trans. B, 2012,vol. 43B, pp. 1098-1105.CrossRefGoogle Scholar
  21. 21.
    Y.S. Han and J.H. Park: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 235-242.CrossRefGoogle Scholar
  22. 22.
    M.D. Johnston, S. Jahanshahi, and F.J. Lincoln: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 433-42.CrossRefGoogle Scholar
  23. 23.
    D.R. Swinbourne, G.G. Barbanate and A. Sheeran: Metall. Mater. Trans. B, 1998, vol. 9B, pp. 555-62.CrossRefGoogle Scholar
  24. 24.
    T.S. Kho, D.R. Swinbourne and T. Lehner: Metall. Mater. Trans. B,, 2006, vol. 37B, pp. 209-14.CrossRefGoogle Scholar
  25. 25.
    C. Chen and S. Jahanshahi: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 1166-74.CrossRefGoogle Scholar
  26. 26.
    L. Paulina, D.R. Swinbourne, and T.S. Kho: Miner. Proces. Extr. Metall., 2013, vol. 122(2), pp. 79-86.CrossRefGoogle Scholar
  27. 27.
    S Yan and D.R. Swinbourne: Miner. Proces. Extr. Metall., 2003, Vol. 112, pp. 75-80.CrossRefGoogle Scholar
  28. 28.
    H.M. Henao, P. Hayes, E. Jak, and G.G. Richard: Proceedings of the Lead-Zinc, Vancouver, Canada (publ.: The Minerals, Metals & Materials Society), 2010, pp. 1145–60.Google Scholar
  29. 29.
    R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelly, D. Wagram: Selected values of the thermodynamic properties of the elements. American Society for Metals, Metals Park, Ohio, 1973.Google Scholar
  30. 30.
    V. Swamy, S.A. Decterov, and A.D. Pelton: Glass Science and Technology, 76 (2), 2003, pp. 62-70.Google Scholar
  31. 31.
    V.I. Davydov: Zh. Neorg. Khimii, 2, 1957, pp.1460-1466.Google Scholar
  32. 32.
    R. Louey, D.R. Swinbourne and T. Lehner: AusIMM Proceedings, 1999, vol. 304(2), pp. 31-36.Google Scholar
  33. 33.
    A. Yazawa and Y. Takeda: Trans. Jpn Inst. Metal, 1982, vol. 23(6), pp. 328-33.CrossRefGoogle Scholar
  34. 34.
    F. Kongoli, I. Mcbow, and A. Yazawa: Proceedings of Sohn International Symposium on Advanced Processing of Metals and Materials, Warrendale, PA, 2006, pp. 69–87.Google Scholar
  35. 35.
    A. Yazawa, Y. Takeda, and S. Nakazawa: Proceedings of the Copper 99–Cobre 99, The Metallurgical Society of CIM, Phoenix, AZ, 1999, pp. 587–97.Google Scholar
  36. 36.
    C.W Bale, E. Besisle, P. Chartrand, S.A. Decterov, G.R. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, C. Robelin and S. Peterson: CALPHAD, 2009 vol. 33, pp. 295-311.CrossRefGoogle Scholar
  37. 37.
    FactSageTM 6.4: www. Accessed August 2015.Google Scholar
  38. 38.
    Y. Takeda, S. Ishiwata, and A. Yazawa: Trans. Jpn Inst. Metal, 1983, vol. 24(7), pp. 518-28.CrossRefGoogle Scholar
  39. 39.
    W.X. Yan, D. Lian, D. GuiFang, W. Peng, W. Wei, W. Liduo, and Q. Yong: Chinsese Sci. Bull., 2009, vol., 54, pp. 2810–13.Google Scholar
  40. 40.
    M. Balkanski, M.A. Nusimovici, and J. Reydellet: Solid State Commun., 1969, vol. 7, pp. 815–18.CrossRefGoogle Scholar
  41. 41.
    M. Micoulaut, L. Cormier, and G.S. Henderson: J. Phys. Condens. Matter., 2006, vol. 18, pp. R753-84.CrossRefGoogle Scholar
  42. 42.
    Handbook of Minerals Raman Spectra (ENS-Lyon): Free Database 2000-2015 Accessed August 2015.
  43. 43.
    J.H. Park and D.J. Min: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 689-94.CrossRefGoogle Scholar
  44. 44.
    O.M. Sreedharan, E.Athiappan, R. Pankajavalli, and J.B. Gnamoorthy: J. Less-Common Metals, 1979, vol. 68, pp. 143-52.CrossRefGoogle Scholar
  45. 45.
    G. Sodeck, P Entner, and A. Neekel: High Temp. Sci., 1970, vol. 2, pp. 311-21.Google Scholar
  46. 46.
    J. P. Hager, S. M. Howard, and J. H. Jones: Metall. Trans., 1973, vol. 4, pp. 2383-88.CrossRefGoogle Scholar
  47. 47.
    G.K. Sigworth and J.F. Elliott: Can. Metall. Q., 1974,vol. 13(3), pp. 455-61.CrossRefGoogle Scholar
  48. 48.
    A. Yazawa and T. Azakami: Can. Metall. Q., 1969, vol. 8(3), pp. 257-61.CrossRefGoogle Scholar
  49. 49.
    C.B Alcock, R. Sridhar, and R.C. Svedbergs: J. Chem. Thermodynamics, 1970, vol. 3, pp. 255-63.CrossRefGoogle Scholar
  50. 50.
    J. Wang, S. Jin, C. Leinenbach, and A. Jacot: J. Alloys Compd., 2010, vol. 504, pp. 159-65.CrossRefGoogle Scholar
  51. 51.
    J.A. Duffy and M.D. Ingram: J. Non-Crystal Solids, 1976, vol. 21, pp. 373-410.CrossRefGoogle Scholar
  52. 52.
    J.A. Duffy and M.D. Ingram: J. Phys. Chem. Glasses, 1975, vol. 16, pp. 119-23.Google Scholar
  53. 53.
    J.A. Duffy, M.D. Ingram, and I.D. Sommerville: J. Chem. Soc. Faraday Trans. I, 1978, vol. 74, pp. 1410-19.CrossRefGoogle Scholar
  54. 54.
    J.D. Gilchrist: Extraction Metallurgy, 3rd Ed., Pergamon Press, London, 1989, pp.198-200.Google Scholar
  55. 55.
    D.R. Ride (ed.): Handbook of Chemistry and Physics, 84th Ed., CRC Press, Boca Raton, FL, 2003. Table-12:14-12:15.Google Scholar
  56. 56.
    L. Pauling: The nature of the chemical bond and the structure of molecules and crystals, 3rd Ed, Cornell University Press, New York, 1965.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • M. A. H. Shuva
    • 1
    • 2
  • M. A. Rhamdhani
    • 1
    • 2
  • G. A. Brooks
    • 1
    • 2
  • S. Masood
    • 1
    • 2
  • M. A. Reuter
    • 3
  1. 1.Department of Mechanical and Product Design EngineeringSwinburne University of TechnologyMelbourneAustralia
  2. 2.Wealth from Waste Research ClusterMelbourneAustralia
  3. 3.Helmholtz Institute Freiberg for Resource TechnologyFreibergGermany

Personalised recommendations