Refractory–Slag–Metal–Inclusion Multiphase Reactions Modeling Using Computational Thermodynamics: Kinetic Model for Prediction of Inclusion Evolution in Molten Steel

Abstract

The refractory–slag–metal–inclusion multiphase reaction model was developed by integrating the refractory–slag, slag–metal, and metal–inclusion elementary reactions in order to predict the evolution of inclusions during the secondary refining processes. The mass transfer coefficient in the metal and slag phase, and the mass transfer coefficient of MgO in the slag were employed in the present multiphase reactions modeling. The “Effective Equilibrium Reaction Zone (EERZ) Model” was basically employed. In this model, the reaction zone volume per unit step for metal and slag phase, which is dependent on the ‘effective reaction zone depth’ in each phase, should be defined. Thus, we evaluated the effective reaction zone depth from the mass transfer coefficient in metal and slag phase at 1873 K (1600 °C) for the desulfurization reaction which was measured in the present study. Because the dissolution rate of MgO from the refractory to slag phase is one of the key factors affecting the slag composition, the mass transfer coefficient of MgO in the ladle slag was also experimentally determined. The calculated results for the variation of the composition of slag and molten steel as a function of reaction time were in good agreement with the experimental results. The MgAl2O4 spinel inclusion was observed at the early to middle stage of the reaction, whereas the liquid oxide inclusion was mainly observed at the final stage of the refining reaction. The content of CaO sharply increased, and the SiO2 content increased mildly with the increasing reaction time, while the content of Al2O3 in the inclusion drastically decreased. Even though there is slight difference between the calculated and measured results, the refractory–slag–metal multiphase reaction model constructed in the present study exhibited a good predictability of the inclusion evolution during ladle refining process.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    E. Sunami, S. Nozaki, Y. Tamaou and T. Miura: Tetsu-to-Haganė., 1982, vol. 68, pp. S248.

    Google Scholar 

  2. 2.

    O. Suzuki, M. Oguchi, K. Nohara, T. Emi and T. Mihara: Tetsu-to-haganė., 1982, vol. 68, pp. S249.

    Google Scholar 

  3. 3.

    M. Hojo, R. Nakao, T. Umezaki, H. Kawai, S. Tanaka and S. Fukumoto: ISIJ Int., 1996, vol. 36, pp. S128-31.

    Article  Google Scholar 

  4. 4.

    H. Todoroki and K. Mizno: ISIJ. Int., 2004, vol. 44, pp. 1350-57.

    Article  Google Scholar 

  5. 5.

    J. H. Park and D. S. Kim: Metall. Mater. Trans. B, 2004, vol. 36B, pp. 495-97.

    Google Scholar 

  6. 6.

    J. H. Park and Y. B. Kang: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 791-98.

    Article  Google Scholar 

  7. 7.

    J. H. Park: Calphad, 2007, vol. 31, pp. 428-37.

    Article  Google Scholar 

  8. 8.

    J. H. Park: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 657-63.

    Article  Google Scholar 

  9. 9.

    J. H. Park: Mater. Sci. Eng. A, 2007, vol. 472, pp. 43-51.

    Article  Google Scholar 

  10. 10.

    J. H. Park and H. Todoroki: ISIJ. Int., 2010, vol. 50, pp. 1333-46.

    Article  Google Scholar 

  11. 11.

    M. Jiang, X. H. Wang and W. J. Wang: Steel Res. Int., 2010 vol. 81, pp. 759-65.

    Article  Google Scholar 

  12. 12.

    N. Verma, P. C. Pistorius, R. J. Fruehan, M. Potter, M. Lind and S. Story: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 711-19.

    Article  Google Scholar 

  13. 13.

    N. Verma, P. C. Pistorius, R. J. Fruehan, M. Potter, M. Lind and S. Story: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 720-29.

    Article  Google Scholar 

  14. 14.

    N. Verma, P. C. Pistorius, R. J. Fruehan, M. S. Potter, H. G. Oltmann and E. B. Pretorius : Metall. Mater. Trans. B, 2012, vol. 43B, pp. 830-40.

    Article  Google Scholar 

  15. 15.

    Z. Deng and M. Zhu: ISIJ. Int., 2013, vol. 53, pp. 450-58.

    Article  Google Scholar 

  16. 16.

    R. Ding, B. Blanpain, P. T. Jones and P. Wollants: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 197-206.

    Article  Google Scholar 

  17. 17.

    M. A. Van Ende, Y. M. Kim, M. K. Cho, J. Choi and I. H. Jung: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 477-89.

    Article  Google Scholar 

  18. 18.

    M. A. Van Ende and I. H. Jung: ISIJ. Int., 2014, vol. 54, pp. 489-95.

    Article  Google Scholar 

  19. 19.

    D. Roy, P. C. Pistorius and R. J. Fruhan: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1086-94.

    Article  Google Scholar 

  20. 20.

    D. Roy, P. C. Pistorius and R. J. Fruhan: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1095-104.

    Article  Google Scholar 

  21. 21.

    M. S. Kim: Reaction mechanism and kinetic analysis of chemical reactions between high Mn-high Al steel and CaO-SiO2 type mold flux, PhD thesis, GIFT, POSTECH, Feb. 2016.

  22. 22.

    Y. S. Heish, Y. Watanabe, S. Asai and I. Muchi: Tetsu-to-Haganė., 1983, vol. 69, pp. 596-603.

    Google Scholar 

  23. 23.

    R.D. Morales and M. Macias-Hernandez: Proc. AISTech 2011, 2–5 May 2011, Indianapolis, IN, AIST, Warrendale, PA 15086, 2011, pp. 1339–56.

  24. 24.

    K.J. Graham and G.A. Irons: Proc. SCANMET III, 8–11 June 2008, Luleå, Sweden, MEFOS, Luleå, Sweden, 2008, vol. 1, pp. 385–96.

  25. 25.

    A. Galinodo, G.A. Irons, S. Sun and K. Coley: Proc. CTSSC-EMI 2015, 3–4 September 2015, Tokyo, Japan, 2015, pp. 22–31.

  26. 26.

    A. Harada, N. Maruoka, H. Shibata and S. Y. Kitamura: ISIJ. Int., 2013, vol. 53, pp. 2110-17.

    Article  Google Scholar 

  27. 27.

    A. Harada, N. Maruoka, H. Shibata and S. Y. Kitamura: ISIJ. Int., 2013, vol. 53, pp. 2118-25.

    Article  Google Scholar 

  28. 28.

    A. Harada, N. Maruoka, H. Shibata, M. Zeze, N. Asahara, F. Huang and S. Y. Kitamura: ISIJ. Int., 2014, vol. 54, pp. 2569-77.

    Article  Google Scholar 

  29. 29.

    P. R. Scheller and Q. Shu: Steel Res. Int., 2014, vol. 85, pp. 1310-16.

    Article  Google Scholar 

  30. 30.

    A. Harada, G. Miyano, N. Maruoka, H. Shibata, S. Y. Kitamura: ISIJ. Int,. 2014, vol. 54, pp. 2230–38.

    Article  Google Scholar 

  31. 31.

    www.factsage.com (accessed December 2015).

  32. 32.

    C. W. Bale, E. Belisle, S. A. Decterov, G. Eriksson, K. Hack, I. H. Jung, Y. B. Kang, J. Melancon, A. D. Pelton, C. Robelin and S. Petersen: Calphad, 2009, vol. 33, pp. 295-311.

    Article  Google Scholar 

  33. 33.

    A. D. Pelton: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 869-76.

    Article  Google Scholar 

  34. 34.

    I. H. Jung, S. A. Decterov, and A. D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 493-507.

    Article  Google Scholar 

  35. 35.

    I.H. Jung: Proc. 4th Asia Steel Int. Conf., 24–27 May 2009, Busan, Korea, KIM+, Seoul, Korea, 2009, CR-ROM paper no. S3-30.

  36. 36.

    I.H. Jung: Proc. AISTech 2010, 3–6 May 2010, Pittsburgh, PA, AIST, Warrendale, PA 15086, 2010, pp. 1211–20.

  37. 37.

    I.H. Jung, M.A. Van Ende and D.G. Kim: Proc. UNITECR 2011, 30 October–2 November 2011, Kyoto, Japan, TARJ, Tokyo, Japan, 2011, pp. 582.

  38. 38.

    D.G. Kim, M.A. Van Ende, C. Van Hoek, C. Liebske, S. Van Der Laan and I.H. Jung: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1315–25.

    Article  Google Scholar 

  39. 39.

    Y. S. Han, D. R. Swinbourne, and J. H. Park: Metall. Mater. Trans. B, 2015, vol. 46B, pp, 2449-57.

    Article  Google Scholar 

  40. 40.

    S. K. Kwon, J. S. Park, and J. H. Park: ISIJ Int., 2015, vol. 55, pp. 2589-96.

    Article  Google Scholar 

  41. 41.

    J. S. Park, D. H. Kim and J. H. Park: J. Am. Ceram. Soc., 2015, vol. 98, pp. 1974-81.

    Article  Google Scholar 

  42. 42.

    Y. S. Han and J. H. Park: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 235-42.

    Article  Google Scholar 

  43. 43.

    S. K. Kwon, Y. M. Kong, and J. H. Park: Met. Mater. Int., 2014, vol. 20, pp. 959-66.

    Article  Google Scholar 

  44. 44.

    J. S. Park and J. H. Park: Steel Res. Int., 2014, vol. 85, pp. 1303-09.

    Article  Google Scholar 

  45. 45.

    J. S. Park and J. H. Park: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 953-60.

    Article  Google Scholar 

  46. 46.

    J. H. Shin and J. H. Park: ISIJ Int., 2013, vol. 53, pp. 2266-68.

    Article  Google Scholar 

  47. 47.

    J. H. Heo, B. S. Kim and J. H. Park: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1352-63.

    Article  Google Scholar 

  48. 48.

    J. H. Park: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 938-47.

    Article  Google Scholar 

  49. 49.

    M. Umakoshi, K. Mori and Y. Kwai: Tetsu-to-Haganė., 1981, vol. 67, pp. 1726-34.

    Google Scholar 

  50. 50.

    S. Vollmann and H. Harmuth: Interceram, 2012, vol. 61, pp. 19-21.

    Google Scholar 

Download references

Acknowledgment

The present authors express great thanks to Professor In-Ho Jung, McGill University, Canada, for his help for using thermodynamic database, which is significantly important in the present refractory–slag–metal–inclusion multiphase reactions modeling with the FactSageTM software package.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Additional information

Manuscript submitted January 25, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shin, J.H., Chung, Y. & Park, J.H. Refractory–Slag–Metal–Inclusion Multiphase Reactions Modeling Using Computational Thermodynamics: Kinetic Model for Prediction of Inclusion Evolution in Molten Steel. Metall Mater Trans B 48, 46–59 (2017). https://doi.org/10.1007/s11663-016-0734-6

Download citation

Keywords

  • Mass Transfer Coefficient
  • Molten Steel
  • SiO2 Content
  • Slag Composition
  • Slag Phase