Skip to main content
Log in

Thermo-Physical Properties of B2O3-Containing Mold Flux for High Carbon Steels in Thin Slab Continuous Casters: Structure, Viscosity, Crystallization, and Wettability

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of B2O3 on the thermo-physical properties of commercial mold fluxes, including the viscosity, crystallization behavior, and wettability, was investigated. Viscosity was measured using the rotating spindle method, and CCT (continuous cooling transformation) diagrams were obtained to investigate the crystallization behavior at various cooling rates using CLSM (confocal laser scanning microscope). The wettability of the fluxes was determined by measuring the contact angles at 1573 K (1300 °C) using the digital images generated by the sessile drop method and were used to calculate the surface tension, interfacial tension, and work of adhesion for Flux A (existing flux) and B (modified flux). These thermo-physical properties were correlated with the structural analysis obtained using FT-IR (Fourier transform-infrared), Raman and MAS-NMR (magic angle spin-nuclear magnetic resonance) spectroscopy. In addition, DTA (differential thermal analysis) was performed on the samples to measure the liquidus temperatures. Higher B2O3 concentrations resulted in lower liquidus temperatures, consequently decreasing the viscosity, the break temperature, and the crystallization temperature. However, B2O3 addition accelerated crystal growth owing to the higher diffusion kinetics of the cations, which also reduced the size of the liquid/solid co-existing region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.C. Mills: Mold Powders for Continuous Casting Casting Volume, Chapter 8. The AISE Steel Foundation, Pittsburgh, 2003, p. 1.

    Google Scholar 

  2. 2. K.C. Mills and A.B. Fox: ISIJ Int., 2003, vol. 43, pp. 1479-1486.

    Article  Google Scholar 

  3. S. Ogibayashi: 85th Steelmak. Conf. Proc., Warrandale, PA, 2002, vol. 85, pp 175–83.

  4. 4. Y.A. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34, pp. 707-725.

    Article  Google Scholar 

  5. 5. S. Ogibayashi, K. Yamaguchi, T. Mukai, T. Takahashi, Y. Mimura, K. Koyama, Y. Nagano and T. Nakano: Nippon steel technical report. Overseas, 1987, vol. 34, pp. 1-10.

    Google Scholar 

  6. 6. H. Maeda: Curr. Adv. Mater. Proc., 1993, vol. 6, pp. 280-280.

    Google Scholar 

  7. K. Tsutsumi, H. Murakami, S. Nishioka, M. Tada, M. Nakada and M. Komatsu: Tetsu-to-Hagane, 1998, vol. 84, pp. 617-624.

    Google Scholar 

  8. D. Rosenthal and W. Hennig: Proc. 2006 Int. Symp. on Thin Slab Casting and Rolling, Guangzhou, China, 2006.

  9. 9. J.A. Kromhout: Mould powders for high speed continuous casting of steel, Goldeprint Drukkerijen, Enschede, Netherlands, 2011.

    Google Scholar 

  10. 10. K.Z. Gu, W.L. Wang, L.J. Zhou, F.J. Ma and D.Y. Huang: Metall. Mater. Trans. B, 2012, vol. 43, pp. 937-945.

    Article  Google Scholar 

  11. 11. M. Susa, K. Nagata and K.C. Mills: Ironmak. Steelmak., 1993, vol. 20, pp. 372-378.

    Google Scholar 

  12. 12. M. Kawamoto, Y. Tsukaguchi, N. Nishida, T. Kanazawa and S. Hiraki: ISIJ Int., 1997, vol. 37, pp. 134-139.

    Article  Google Scholar 

  13. 13. J. Cho, H. Shibata, T. Emi and M. Suzuki: ISIJ Int., 1998, vol. 38, pp. 268-275.

    Article  Google Scholar 

  14. 14. H. Nakada, M. Susa, Y. Seko, M. Hayashi and K. Nagata: ISIJ Int., 2008, vol. 48, pp. 446-453.

    Article  Google Scholar 

  15. 15. J. Diao, B. Xie, J.P. Xiao and C.Q. Ji: ISIJ Int., 2009, vol. 49, pp. 1710-1714.

    Article  Google Scholar 

  16. 16. H. Mizuno, H. Esaka, K. Shinozuka and M. Tamura: ISIJ Int., 2008, vol. 48, pp. 277-285.

    Article  Google Scholar 

  17. 17. R. Taylor and K.C. Mills: Ironmak. Steelmak., 1988, vol. 15, pp. 187-194.

    Google Scholar 

  18. 18. J.W. Cho and H.T. Jeong: Metall. Mater. Trans. B, 2013, vol. 44, pp. 146-153.

    Article  Google Scholar 

  19. 19. M. Susa, K.C. Mills, M.J. Richardson, R. Taylor and D. Stewart: Ironmak. Steelmak., 1994, vol. 21, pp. 279-286.

    Google Scholar 

  20. 20. H. Kyoden, T. Doihara and O. Nomura, Steelmak. Conf. Proc., 1986, vol. 69, pp 153-159.

    Google Scholar 

  21. 21. S. Ozawa, M. Susa, T. Goto, R.K. Endo and K.C. Mills: ISIJ Int., 2006, vol. 46, pp. 413-419.

    Article  Google Scholar 

  22. 22. H. Kim, H. Matsuura, F. Tsukihashi, W.L. Wang, D.J. Min and I. Sohn: Metall. Mater. Trans. B, 2013, vol. 44, pp. 5-12.

    Article  Google Scholar 

  23. 23. M. Lanyi and C. Rosa: Ironmak. Steelmak., 1982, vol. 9, pp. 25-31.

    Google Scholar 

  24. 24. A.I. Zaitsev, A.V. Leites, A.D. Litvina and B.M. Mogutnov: Steel Res., 1994, vol. 65, pp. 368-374.

    Google Scholar 

  25. 25. M. Persson, S. Seetharaman and S. Seetharaman: ISIJ Int., 2007, vol. 47, pp. 1711-1717.

    Article  Google Scholar 

  26. 26. K. Shimizu, T. Suzuki, I. Jimbo and A. Cramb: Iron Steelmaker, 2001, vol. 28, pp. 87-93.

    Google Scholar 

  27. 27. G.H. Kim and I. Sohn: Metall. Mater. Trans. B, 2014, vol. 45, pp. 86-95.

    Article  Google Scholar 

  28. 28. D. Manara, A. Grandjean and D.R. Neuville: Am. Mineral., 2009, vol. 94, pp. 777-784.

    Article  Google Scholar 

  29. 29. A.B. Fox, K.C. Mills, D. Lever, C. Bezerra, C. Valadares, I. Unamuno, J.J. Laraudogoitia and J. Gisby: ISIJ Int., 2005, vol. 45, pp. 1051-1058.

    Article  Google Scholar 

  30. 30. G.R. Li, H.M. Wang, Q.X. Dai, Y.T. Zhao and J.S. Li: J. Iron. Steel Res. Int., 2007, vol. 14, pp. 25-28.

    Article  Google Scholar 

  31. 31. L.J. Zhou, W.L. Wang, B.X. Lu, G.H. Wen and J. Yang: Met. Mater. Int., 2015, vol. 21, pp. 126-133.

    Article  Google Scholar 

  32. 32. B.X. Lu, W.L. Wang, J. Li, H. Zhao and D.Y. Huang: Metall. Mater. Trans. B, 2013, vol. 44, pp. 365-377.

    Article  Google Scholar 

  33. 33. J. Wei, W.L. Wang, L.J. Zhou, D.Y. Huang, H. Zhao and F.J. Ma: Metall. Mater. Trans. B, 2014, vol. 45, pp. 643-652.

    Article  Google Scholar 

  34. 34. F. Richardson: Physical Chemistry of Melts in Metallurgy Volume 1, Academic Press, London, LON, 1974. pp. 111-114.

    Google Scholar 

  35. 35. Z. Wang, Q. Shu and K. Chou: ISIJ Int., 2011, vol. 51, pp. 1021-1027.

    Article  Google Scholar 

  36. 36. Y.Q. Sun and Z.T. Zhang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1549-1554.

    Article  Google Scholar 

  37. 37. Y. Kim and K. Morita: ISIJ Int., 2014, vol. 54, pp. 2077-2083.

    Article  Google Scholar 

  38. 38. Y. Kim, Y. Yanaba and K. Morita: J. Non-Cryst. Solids, 2015, vol. 415, pp. 1-8.

    Article  Google Scholar 

  39. 39. G.H. Kim and I. Sohn: Metall. Mater. Trans. B, 2011, vol. 42, pp. 1218-1223.

    Article  Google Scholar 

  40. 40. G.H. Kim and I. Sohn: ISIJ Int., 2012, vol. 52, pp. 68-73.

    Article  Google Scholar 

  41. 41. H. Park, J.Y. Park, G.H. Kim and I. Sohn: Steel Res. Int., 2012, vol. 83, pp. 150-156.

    Article  Google Scholar 

  42. 42. G.H. Kim, C.S. Kim and I. Sohn: ISIJ Int., 2013, vol. 53, pp. 170-176.

    Article  Google Scholar 

  43. 43. J.Y. Park, J.W. Ryu and I. Sohn: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1186-1191.

    Article  Google Scholar 

  44. 44. J. Kim, J. Choi, I. Han and I. Sohn: J. Non-Cryst. Solids, 2016, vol. 432, pp. 218-226.

    Article  Google Scholar 

  45. 45. G. Socrates: Infrared and Raman characteristic group frequencies: tables and charts. 3rd ed., Wiley, New York, NY, 2004.

    Google Scholar 

  46. 46. S. Ueda, H. Koyo, T. Ikeda, Y. Kariya and M. Maeda: ISIJ Int., 2000, vol. 40, pp. 739-743.

    Article  Google Scholar 

  47. 47. E.I. Kamitsos, M.A. Karakassides and G.D. Chryssikos: J. Phys. Chem., 1987, vol. 91, pp. 1073-1079.

    Article  Google Scholar 

  48. 48. A. Radu, G. Borodi, R. Stefan, A.R. Biris and L. Baia: Mater. Chem. Phys., 2014, vol. 143, pp. 1271-1277.

    Article  Google Scholar 

  49. 49. E.T. Yew, W.M. Hua, P.S. Wong, N.A.M. Jan, Z. Ibrahim and R. Hussin, Adv. Mat. Res., 2012, vol. 501, pp 51-55.

    Article  Google Scholar 

  50. 50. R.C. Lucacel, C. Marcus, V. Timar and I. Ardelean: Solid State Sci., 2007, vol. 9, pp. 850-854.

    Article  Google Scholar 

  51. 51. F. Wang, Q. Liao, G. Xiang and S. Pan: J. Mol. Struct., 2014, vol. 1060, pp. 176-181.

    Article  Google Scholar 

  52. 52. P. McMillan: Am. Mineral., 1984, vol. 69, pp. 622-644.

    Google Scholar 

  53. 53. E. Buixaderas, E.M. Anghel, S. Petrescu and P. Osiceanu: J. Solid State Chem., 2010, vol. 183, pp. 2227-2235.

    Article  Google Scholar 

  54. 54. B.O. Mysen, D. Virgo and C.M. Scarfe: Am. Mineral., 1980, vol. 65, pp. 690-710.

    Google Scholar 

  55. A.A. Osipov, L.M. Osipova and V.E. Eremyashev: Glass. Phys. Chem., 2013, vol. 39, pp. 105-112.

    Article  Google Scholar 

  56. 56. X. Wu, R.E. Youngman and R. Dieckmann: J. Non-Cryst. Solids, 2013, vol. 378, pp. 168-176.

    Article  Google Scholar 

  57. 57. L.-S. Du and J.F. Stebbins: J. Non-Cryst. Solids, 2003, vol. 315, pp. 239-255.

    Article  Google Scholar 

  58. 58. L.-S. Du and J.F. Stebbins: J. Phys. Chem. B, 2003, vol. 107, pp. 10063-10076.

    Article  Google Scholar 

  59. 59. R. Youngman, S. Haubrich, J. Zwanziger, M. Janicke and B. Chmelka: Science, 1995, vol. 269, pp. 1416-1420.

    Article  Google Scholar 

  60. 60. C. Bale, P. Chartrand, S. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A. Pelton and S. Petersen: Calphad, 2002, vol. 26, pp. 189-228.

    Article  Google Scholar 

  61. 61. K. Mills, A. Fox, Z. Li and R. Thackray: Ironmak. Steelmak., 2005, vol. 32, pp. 26-34.

    Article  Google Scholar 

  62. 62. S. Sridhar, K.C. Mills, O.D.C. Afrange, H.P. Lorz and R. Carli: Ironmak. Steelmak., 2000, vol. 27, pp. 238-242.

    Article  Google Scholar 

  63. 63. Z. Wang, Q.F. Shu and K.C. Chou: Steel Res. Int., 2013, vol. 84, pp. 766-776.

    Article  Google Scholar 

  64. 64. Z. Wang, Q. Shu and K. Chou: Can. Metall. Quart., 2013, vol. 52, pp. 405-412.

    Article  Google Scholar 

  65. 65. Z.J. Wang, Y.Q. Sun, S. Sridhar, M. Zhang, M. Guo and Z.T. Zhang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 537-541.

    Article  Google Scholar 

  66. 66. H.G. Ryu, Z.T. Zhang, J.W. Cho, G.H. Wen and S. Sridhar: ISIJ Int., 2010, vol. 50, pp. 1142-1150.

    Article  Google Scholar 

  67. 67. L.J. Zhou, W.L. Wang, F.J. Ma, J. Li, J. Wei, H. Matsuura and F. Tsukihashi: Metall. Mater. Trans. B, 2012, vol. 43, pp. 354-362.

    Article  Google Scholar 

  68. 68. M. Hanao: ISIJ Int., 2013, vol. 53, pp. 648-654.

    Article  Google Scholar 

  69. 69. T. Watanabe, H. Hashimoto, M. Hayashi and K. Nagata: ISIJ Int., 2008, vol. 48, pp. 925-933.

    Article  Google Scholar 

  70. 70. H.W. Nesbitt, G.M. Bancroft, G.S. Henderson, R. Ho, K.N. Dalby, Y. Huang and Z. Yan: J. Non-Cryst. Solids, 2011, vol. 357, pp. 170-180.

    Article  Google Scholar 

  71. 71. J. Duffy: Phys. Chem. Glass., 1975, vol. 16, pp. 119-123.

    Google Scholar 

  72. 72. C. Fincham and F. Richardson, R. Soc. Lond., 1954, vol. A223, pp. 40-62.

    Article  Google Scholar 

  73. 73. J.H. Park, D.J. Min and H.S. Song: ISIJ Int., 2002, vol. 42, pp. 344-351.

    Article  Google Scholar 

  74. 74. S. Likitvanichkul and W.C. Lacourse: J. Mater. Sci., 1995, vol. 30, pp. 6151-6155.

    Article  Google Scholar 

  75. 75. T. Young, G. Peacock and J. Leitch: Miscellaneous Works of the Late Thomas Young, MD, FRS., Thoemmes, London, LON, 2003.

    Google Scholar 

  76. 76. R. Boni and G. Derge: Trans. AIME, 1956, vol. 206, pp. 53-59.

    Google Scholar 

  77. K.C. Mills, S. Karagadde, P.D. Lee, L. Yuan and F. Shahbazian: ISIJ Int., 2016.

  78. 78. K.C. Mills and Y.C. Su: Int. Mater. Rev., 2006, vol. 51, pp. 329-351.

    Article  Google Scholar 

  79. 79. J.G. Li, L. Coudurier and N. Eustathopoulos: J. Mater. Sci., 1989, vol. 24, pp. 1109-1116.

    Article  Google Scholar 

  80. 80. J.G. Li: J. Am. Ceram. Soc., 1992, vol. 75, pp. 3118-3126.

    Article  Google Scholar 

  81. 81. J.A. Pask and R.M. Fulrath: J. Am. Ceram. Soc., 1962, vol. 45, pp. 592-596.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Brain Korea 21 PLUS (BK21 PLUS) Project at the Division of the Humantronics Information Materials Grant No. 2014-11-0010 and the National Research Foundation of Korea, Project No. NRF- 2013R1A1A2009967. Special appreciation is extended to professor Takeshi Yoshikawa and senior research engineer Yutaka Yanaba at The University of Tokyo for conducting the NMR experiments and helpful comments on the NMR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Sohn.

Additional information

Manuscript submitted March 1, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JY., Kim, G.H., Kim, J.B. et al. Thermo-Physical Properties of B2O3-Containing Mold Flux for High Carbon Steels in Thin Slab Continuous Casters: Structure, Viscosity, Crystallization, and Wettability. Metall Mater Trans B 47, 2582–2594 (2016). https://doi.org/10.1007/s11663-016-0720-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0720-z

Keywords

Navigation