Skip to main content
Log in

Devolatilization Characteristics and Kinetic Analysis of Lump Coal from China COREX3000 Under High Temperature

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A devolatilization study of two lump coals used in China COREX3000 was carried out in a self-developed thermo-gravimetry at four temperature conditions [1173 K, 1273 K, 1373 K, and 1473 K (900 °C, 1000 °C, 1100 °C, and 1200 °C)] under N2. This study reveals that the working temperature has a strong impact on the devolatilization rate of the lump coal: the reaction rate increases with the increasing temperature. However, the temperature has little influence on the maximum mass loss. The conversion rate curve shows that the reaction rate of HY lump coal is higher than KG lump coal. The lump coals were analyzed by XRD, FTIR, and optical microscopy to explore the correlation between devolatilization rate and properties of lump coal. The results show that the higher reaction rate of HY lump coal attributes to its more active maceral components, less aromaticity and orientation degree of the crystallite, and more oxygenated functional groups. The random nucleation and nuclei growth model (RNGM), volume model (VM), and unreacted shrinking core model (URCM) were employed to describe the reaction behavior of lump coal. It was concluded from kinetics analysis that RNGM model was the best model for describing the devolatilization of lump coals. The apparent activation energies of isothermal devolatilization of HY lump coal and KG lump coal are 42.35 and 45.83 kJ/mol, respectively. This study has implications for the characteristics and mechanism modeling of devolatilization of lump coal in COREX gasifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

XRD:

X-ray diffraction

FTIR:

Fourier transform infrared spectroscopy

RNGM:

Random nucleation and nuclei growth model

VM:

Volume model

URCM:

Unreacted shrinking core model

\( \frac{{{\text{d}}\alpha }}{{{\text{d}}t}} \) :

Reaction conversion rate (s−1)

k(T):

The reaction rate constant

f(α):

The devolatilization mechanism function

t :

Devolatilization time (s)

α :

Devolatilization conversion

A :

The pre-exponential factor (s−1)

E :

The activation energy (kJ/mol)

R:

The universal gas constant (kJ/(mol K))

m i :

The initial weight of lump coal (g)

m t :

The instant weight of the sample during experiment (g)

m :

The sample weight after experiment (g)

k RNGM :

The reaction rate constant of random nucleation and nuclei growth model

k VM :

The reaction rate constant of volume model

k URCM :

The reaction rate constant of unreacted shrinking core model

\( \left( {\frac{{{\text{d}}\alpha }}{{{\text{d}}t}}} \right)_{\exp ,i} \) :

Reaction conversion rate based on the experiment data

\( \left( {\frac{{{\text{d}}\alpha }}{{{\text{d}}t}}} \right)_{{{\text{calc}},i}} \) :

Reaction conversion rate based on the experiment data

i :

The reaction temperature (K)

DEV(α):

Relative error (pct)

α exp,i :

Experiment devolatilization conversion data

α calc,i :

Calculated devolatilization conversion data

max(α)exp :

The maximum conversion of experiment

N :

The number of experiment dada

K1 :

Correction coefficient

A 002 :

The area of (002) band

A γ :

The area of γ band

B 002 :

The half width of (002) band (deg)

ϕ 002 :

The diffraction angle of (002) band (deg)

λ :

The wavelength of incident rays, nm

θ 100 :

The diffraction angle of (100) band (deg)

β 100 :

THE half width of (100) band (deg)

References

  1. S. Pal and A. K. Lahiri: Metallurgical and Materials Transactions B., 34 (2003),103–14.

    Article  Google Scholar 

  2. S. Pal and A. K. Lahiri: Metallurgical and Materials Transactions B., 34(2003),115–19.

    Article  Google Scholar 

  3. 3. X. Liu, G. Pan, G. Wang and Z. Wen: Energy & Fuels, 25(2011),5729–35.

    Article  Google Scholar 

  4. 4. K. Du, S.Wu, Z. Zhang, F. Chang and X. Liu: ISIJ International, 54(2014), 2737–45.

    Article  Google Scholar 

  5. 5. Y. Guo, W. Xu, J. Zhu and J. Zhang: Metallurgical and Materials Transactions B., 44(2013), 1078–85.

    Article  Google Scholar 

  6. 6. P. P. Kumar, D. Gupta, T. K. Naha and S. S. Gupta: Ironmaking & Steelmaking., 33(2006), 293–98.

    Article  Google Scholar 

  7. 7. Y. L. Guo, W. Xu, J. Zhu and J. Zhang: Ironmaking & Steelmaking., 40(2013), 545–50.

    Article  Google Scholar 

  8. 8. P. P. Kumar, S. C. Barman, B. M. Reddy and V. R. Sekhar: Ironmaking & Steelmaking., 36(2009), 87–90.

    Article  Google Scholar 

  9. 9. B. Kim, S. Gupta, S. Lee, S. Kim and V. Sahajwalla: Energy & Fuels., 22(2008), 514–22.

    Article  Google Scholar 

  10. 10. M. Minkina, F. L. G. Oliveira and V. Zymla: Fuel Processing Technology., 91(2010), 476–85.

    Article  Google Scholar 

  11. 11. R. Sahoo and D. Roach: Powder Technology., 152(2005), 1–8.

    Article  Google Scholar 

  12. 12. R. Sahoo and D. Roach: Chemical Engineering and Processing: Process Intensification., 44(2005), 797–804.

    Article  Google Scholar 

  13. 13. Q. P. Campbell, J. R. Bunt and F. de Waal: Journal of Analytical and Applied Pyrolysis., 89(2010), 271–77.

    Article  Google Scholar 

  14. S. Zhang, H. Peng, X. Zhang, W. Liu, L. Wen and G. Qiu: Fuel Process. Technol., 129(2015), 174–82.

    Article  Google Scholar 

  15. M. Knepper, A. Babich, and D. Senk: Proc. 6th Int. Congress on the Science and Technology of Ironmaking - ICSTI, Rio de Janeiro, Brazil, 2012, pp. 811–21.

  16. 16. S. Zhang, F. Zhu, C. Bai, L. Wen and H. Peng: Ironmaking & Steelmaking., 41(2014), 219–28.

    Article  Google Scholar 

  17. 17. L. T. Vlaev, I. G. Markovska and L. A. Lyubchev: Thermochimica Acta.; 406(2003):1–7.

    Article  Google Scholar 

  18. L. Wang, J. Cai, M. Li and H. Sun: Journal of Northeastern University, 31:(2010):550–54.

    Google Scholar 

  19. 19. S. Kasaoka, Y. Sakata and C. Tong: Int. Chem. Eng., 25(1984), 160–67.

    Google Scholar 

  20. 20. J.Y. Shang and E.W. Eduard: Fuel, 63(1984), 1604–09.

    Article  Google Scholar 

  21. 21. C. Xu, S. Hu, J. Xiang, H. Yang, L. Sun, S. Su, B. Wang, Q. Chen, L. He: Bioresource Technology, 171(2014), 253–59.

    Article  Google Scholar 

  22. 22. J. Szekely, J.W. Evans: Chem. Eng. Sci., 25 (1970), 1091–107.

    Article  Google Scholar 

  23. R. Xu, J. Zhang, G. Wang, H. Zuo, P. Li, H. Wang, H. Lin and S. Liu: J. Thermal Anal. Calorim., 123(2016), 773–83.

    Article  Google Scholar 

  24. H. Xiao, J. Zhang, F. Jia and Q. Pang: Iron and Steel, 49(2014), 29-33. (in Chinese)

    Google Scholar 

  25. 25. B. Feng, S. K. Bhatia and J. C. Barry: Carbon., 40(2002), 481–96.

    Article  Google Scholar 

  26. 26. G. Wang, J. Zhang, X. Hou, J. Shao and W. Geng: Bioresource Technol.,177 (2015):66–73.

    Article  Google Scholar 

  27. 27. Y. Sekine, K. Ishikawa, E. Kikuchi, M. Matsukata and A. Akimoto: Fuel,85(2006): 122–26.

    Article  Google Scholar 

  28. 28. K. Xie. Coal structure and its reactivity[M], first edition, science press,Beijing, China, 2012,pp. 210–12

    Google Scholar 

  29. 29. J. Yu, J. A. Lucas and T. F. Wall: Progress in Energy and Combustion Science., 33(2007), 135–170.

    Article  Google Scholar 

  30. 30. Y. Bai, Y. Wang, S. Zhu, L. Yan, F. Li, K. Xie: Fuel, 126 (2014), 1–7.

    Article  Google Scholar 

  31. 31. L. Zhang, W. Liu, D. Men: International Journal of Mining Science and Technology, 24(2014), 93–98.

    Article  Google Scholar 

  32. 32. R. Walker, M. Mastalerz. : International Journal of Coal Geology, 58(2004), 181–91.

    Article  Google Scholar 

  33. 33. W. Xie: Coal chemical and coal quality analysis, first edition, Metallurgical industry press, Beijing, China, 2012, pp. 22–25.

    Google Scholar 

  34. 34. K. Xie. Coal structure and its reactivity[M], first edition, science press, Beijing, China, 2012,pp.68–70

    Google Scholar 

  35. 35. L. Lu, V. Sahajwalla, C. Kong and D. Harris: Carbon., 39(2001), 1821–33.

    Article  Google Scholar 

  36. 36. O. O. Sonibare, T. Haeger and S. F. Foley: Energy, 35(2010), 5347–53.

    Article  Google Scholar 

  37. 37. S. Gupta, V. Sahajwalla, P. Chaubal and T. Youmans: Metallurgical and Materials Transactions B., 36(2005), 385–94.

    Article  Google Scholar 

  38. 38. M. Kawakami, H. Kanba, K. Sato, T. Takenaka, S. Gupta and R. Chandratilleke, V. Sahajwalla: ISIJ International., 46(2006), 1165–70.

    Article  Google Scholar 

  39. 39. P.R. Solomon, D.G. Hamblen, R.M. Carangelo M.A. Serio and G.V. Deshpande: Energy &Fuels, 2(1988),405–22.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support for this work provided by the National Basic Research Program of China (973 Program) (No. 2012CB720401), National Natural Science Foundation of China (No. 51574023), and National Key technology R&D Program of China (No. 2011BAC01B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Zhang.

Additional information

Manuscript submitted October 14, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Zhang, J., Wang, G. et al. Devolatilization Characteristics and Kinetic Analysis of Lump Coal from China COREX3000 Under High Temperature. Metall Mater Trans B 47, 2535–2548 (2016). https://doi.org/10.1007/s11663-016-0708-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0708-8

Keywords

Navigation