Skip to main content
Log in

Thermodynamic Considerations of Contamination by Alloying Elements of Remelted End-of-Life Nickel- and Cobalt-Based Superalloys

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Cobalt and nickel are high-value commodity metals and are mostly used in the form of highly alloyed materials. The alloying elements used may cause contamination problems during recycling. To ensure maximum resource efficiency, an understanding of the removability of these alloying elements and the controllability of some of the primary alloying elements is essential with respect to the recycling of end-of-life (EoL) nickel- and cobalt-based superalloys by remelting. In this study, the distribution behaviors of approximately 30 elements that are usually present in EoL nickel- and cobalt-based superalloys in the solvent metal (nickel, cobalt, or nickel-cobalt alloy), oxide slag, and gas phases during the remelting were quantitatively evaluated using a thermodynamic approach. The results showed that most of the alloying elements can be removed either in the slag phase or into the gas phase. However, the removal of copper, tin, arsenic, and antimony by remelting is difficult, and they remain as tramp elements during the recycling. On the other hand, the distribution tendencies of iron, molybdenum, and tungsten can be controlled by changing the remelting conditions. To increase the resource efficiency of recycling, preventing contamination by the tramp elements and identifying the alloying compositions of EoL superalloys are significantly essential, which will require the development of efficient prior alloy-sorting systems and advanced separation technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. International Resource Panel Working Group on the Global Metal Flows, UNEP: Job Number DTI/1534/PA, UNEP DTIE, France, Paris, 2013.

  2. J.B. Guinée, J.C.J.M. van den Bergh, J. Boelens, P.J. Fraanje, G. Huppes, P.P.A.A.H. Kandelaars, T.M. Lexmond, S.W. Moolenaar, A.A. Olsthoorn, H.A.Udo de Haes, E. Verkuijlen, and E. van der Voet: Ecol. Econ., 1999, vol. 30, no. 1, pp. 47-65

    Article  Google Scholar 

  3. [3] G. M. Mudd: Resour. Policy, 2010, vol. 35, pp. 98-115.

    Article  Google Scholar 

  4. [4] T. E Norgate, S. Jahanshahi, and W. J. Rankin: J. Cleaner Prod., 2007, vol. 15, pp. 838-848.

    Article  Google Scholar 

  5. [5] B. H. Robinson: Sci. Total Environ., 2009, vol. 408, no. 2, pp. 183-191.

    Article  Google Scholar 

  6. [6] T. Norgate, and N. Haque: J. Cleaner Prod., 2010, vol. 18, no. 3, pp. 266-274.

    Article  Google Scholar 

  7. International Resource Panel Working Group on Decoupling, UNEP: Job Number DTI/1388/PA, UNEP DTIE, Paris, 2011.

  8. U.S. Geological Survey: Data Series 140 Nickel Statistics, U.S. Geological Survey online publications, 2013.

  9. U.S. Geological Survey: Data Series 140 Cobalt Statistics, U.S. Geological Survey online publications, 2013.

  10. [10] J. M. Beér: Prog. Energy Combust. Sci., 2007, vol. 33, pp. 107-134.

    Article  Google Scholar 

  11. [11] A. Elshkaki, and T. E. Graedel: J. Cleaner Prod., 2013, vol. 59, pp. 260-273.

    Article  Google Scholar 

  12. U.S. Department of Energy (DOE): Report No. DOE/PI-0009, Washington, DC, December 2011.

  13. UNEP: Job Number DTI/1202/PA, UNEP DTIE, Paris, July 2009.

  14. [14] B. K. Reck, and V. S. Rotter: J. Ind. Ecol., 2012, vol. 16, no. 4, pp. 518-528.

    Article  Google Scholar 

  15. [15] G. M. Mudd: Ore Geol. Rev., 2010, vol. 38, pp. 9-26.

    Article  Google Scholar 

  16. [16] T. Norgate, and S. Jahanshahi: Miner. Eng., 2011, vol. 24, no. 7, pp. 698-707.

    Article  Google Scholar 

  17. [17] M. J. Eckelman: Resour. Conserv. Recycl., 2010, vol. 54, pp. 256-266.

    Article  Google Scholar 

  18. Cobalt Development Institute: Cobalt facts, 2015, pp. 53–55.

  19. Business and Biodiversity Offsets Programme (BBOP): BBOP pilot project case study—Ambatovy Project, Antananarivo, January 2009.

  20. [20] B. K. Reck, and T. E. Graedel: Science, 2012, vol. 337, pp. 690-695.

    Article  Google Scholar 

  21. [21] B. K. Reck, D. B. Müller, K. Rostkowski, and T. E. Graedel: Environ. Sci. Technol., 2008, vol. 42, no. 9, pp. 3394-3400.

    Article  Google Scholar 

  22. [22] E. M. Harper, G. Kavlak, and T. E. Graedel: Environ. Sci. Technol., 2012, vol. 46, pp. 1079-1086.

    Article  Google Scholar 

  23. [23] T. E. Graedel, J. Allwood, J. P. Birat, M. Buchert, C. Hagelüken, B. K. Reck, S. F. Sibley, and G. Sonnemann: J. Ind. Ecol., 2011, vol. 15, no. 3, pp. 355-366.

    Article  Google Scholar 

  24. N.S. Stoloff (1990) Metals Handbook. ASM International, Materials Park, OH, p. 950-980

    Google Scholar 

  25. [25] K. Nakajima, H. Ohno, Y. Kondo, K. Matsubae, O. Takeda, T. Miki, S. Nakamura, and T. Nagasaka: Environ. Sci. Technol., 2013, vol. 47, no. 9, pp. 4653-4660.

    Article  Google Scholar 

  26. [26] R. R. Srivastava, M. Kim, J. Lee, M. K. Jha, and B. Kim: J. Mater Sci., 2014, vol. 49, pp. 4671-4686.

    Article  Google Scholar 

  27. J.J. deBarbadillo: Metall. Trans. A, 1983, vol. 14, pp. 329-341.

  28. J.W. Michael: Superalloys, 1980, 31-41.

  29. [29] V. V. S. Prasad, A. S. Rao, U. Prakash, V. R. Rao, P. K. Rao, and K. M. Gupt: ISIJ Int., 1996, vol. 36, no. 12, pp. 1459-1464.

    Article  Google Scholar 

  30. [30] L. D. Redden, J. N. Greaves: Hydrometallurgy, 1992, vol. 29, pp. 547-565.

    Article  Google Scholar 

  31. R. Schlatter: Superalloys, 1972, A1-A40.

  32. [32] A. Mitchell: ISIJ Int., 1992, vol. 32, no. 5, pp. 557-562.

    Article  Google Scholar 

  33. [33] K. Nakajima, O. Takeda, T. Miki, and T. Nagasaka: Mater. Trans., 2009, vol. 50, no. 3, pp. 453-460.

    Article  Google Scholar 

  34. [34] K. Nakajima, O. Takeda, T. Miki, K. Matsubae, S. Nakamura, and T. Nagasaka: Environ. Sci. Technol., 2010, vol. 44, pp. 5594-5600.

    Article  Google Scholar 

  35. [35] K. Nakajima, O. Takeda, T. Miki, K. Matsubae and T. Nagasaka: Environ. Sci. Technol., 2011, vol. 45, pp. 4929-4936.

    Article  Google Scholar 

  36. [36] T. Hiraki, O. Takeda, K. Nakajima, K. Matsubae, S. Nakamura, and T. Nagasaka: Sci. Technol. Adv. Mater., 2011, vol. 12, pp. 035003.

    Article  Google Scholar 

  37. [37] X. Lu, T. Hiraki, K. Nakajima, O. Takeda, K. Matsuabe, H. M. Zhu, S. Nakamura, and T. Nagasaka: Sep. Purif. Technol., 2012, vol. 89, pp. 135-141.

    Article  Google Scholar 

  38. [38] T. M. Pollock, and S. Tin: J. Propul. Power, 2006, vol. 22, no. 2, pp. 361-374.

    Article  Google Scholar 

  39. [39] M. T. Jovanović, B. Lukić, Z. Mišković, I. Bobić, I. Cvijović, and B. Dimčić: J. Metall., 2007, vol. 13, no. 2, pp. 91-106.

    Google Scholar 

  40. [40] I. Barin: Thermochemical Data of Pure Substances, 2nd ed., VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1993.

    Google Scholar 

  41. H.L. Lukas, S.G. Fries, B. Sundman (2007) Computational Thermodynamics. Cambridge University Press, New York, p. 104-110

    Book  Google Scholar 

  42. [42] X. J. Liu, F. Gao, C. P. Wang, and K. Ishida: J. Electron. Mater., 2008, vol. 37, no. 2, pp. 210-217.

    Article  Google Scholar 

  43. [43] W. Huang, and Y. A. Chang: Intermetallics, 1998, vol. 6, no. 6, pp. 487-498.

    Article  Google Scholar 

  44. [44] S. Uhland, H. Lechtman, and L. Kaufman: CALPHAD, 2001, vol. 25, no. 1, pp. 109-124.

    Article  Google Scholar 

  45. J. H. Wang, X. G. Lu, B. Sundman, and X. P. Su: CALPHAD, 2005, vol. 29, pp. 263-268.

    Article  Google Scholar 

  46. [46] C. E. Campbell, and U. R. Kattner: J. Phase Equilib., 1999, vol. 20, no. 5, pp. 485-496.

    Article  Google Scholar 

  47. J. Wang, F. G. Meng, L. B. Liu, and Z. P. Jin: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 139-145.

    Article  Google Scholar 

  48. F. Islam, and M. Medraj: CALPHAD, 2005, vol. 29, pp. 289-302.

    Article  Google Scholar 

  49. Z. Du, L. Yang, and G. Ling: J. Alloys Compd., 2004, vol. 375, pp. 186-190.

    Article  Google Scholar 

  50. A. F. Guillermet: Z. Metallkd., 1987, vol. 78, no. 9, pp. 639-647.

    Google Scholar 

  51. B. J. Lee: CALPHAD, 1992, vol. 16, no. 2, pp. 121-149.

    Article  Google Scholar 

  52. S. A. Mey: CALPHAD, 1992, vol. 16, no. 3, pp. 255-260.

    Article  Google Scholar 

  53. M. Li, and W. Han: CALPHAD, 2009, vol. 33, pp. 517-520.

    Article  Google Scholar 

  54. [54] A. Gabriel, P. Gustafson, and L. Ansara: CALPHAD, 1987, vol. 11, no. 2, pp. 203-218.

    Article  Google Scholar 

  55. Y. Q. Liu, D. J. Ma, and Y. Du: J. Alloys Compd., 2010, vol. 491, pp. 63-71.

    Article  Google Scholar 

  56. Z. Du, and W. Zhang: J. Alloys Compd., 1996, vol. 245, pp. 164-167.

    Article  Google Scholar 

  57. M. H. G. Jacobs, and P. J. Spencer: CALPHAD, 1998, vol. 22, no. 4, pp. 513-525.

    Article  Google Scholar 

  58. J. Miettinen: CALPHAD, 2001, vol. 25, no. 1, pp. 43-58.

    Article  Google Scholar 

  59. S. H. Zhou, Y. Wang, C. Jiang, J. Z. Zhu, L. Q. Chen, Z. K. Liu: Mater. Sci. Eng. A, 2005, vol. 397, pp. 288-296.

    Article  Google Scholar 

  60. H. L. Chen, and Y. Du: CALPHAD, 2006, vol. 30, pp. 308-315.

    Article  Google Scholar 

  61. I. Kainulainen, P. Taskinen, and J. Gisby: CALPHAD, 2010, vol. 34, pp. 441-445.

    Article  Google Scholar 

  62. G. Ghosh, C. Kantner, and G. B. Olson: J. Phase Equilib., 1999, vol. 23, no. 3, pp. 295-308.

    Article  Google Scholar 

  63. X. G. Lu, B. Sundman, and J. Ågren: CALPHAD, 2009, vol. 33, pp. 450-456.

    Article  Google Scholar 

  64. K. Yaqoob, and J. Joubert: J. Solid State Chem., 2012, vol. 196, pp. 320-325.

    Article  Google Scholar 

  65. Y. Zhang, C. Li, Z. Du, and C. Guo: CALPHAD, 2008, vol. 32, pp. 378-388.

    Article  Google Scholar 

  66. T. Tokunaga, K. Nishio, H. Ohtani, and M. Hasebe: CALPHAD, 2003, vol. 27, pp. 161-168.

    Article  Google Scholar 

  67. H. S. Liu, J. Wang, and Z. P. Jin: CALPHAD, 2004, vol. 28, pp. 363-370.

    Article  Google Scholar 

  68. [68] S. H. Zhou, Y. Wang, L. Q. Chen, Z. K. Liu, and R. E. Napolitano: CALPHAD, 2009, vol. 33, pp. 631-641.

    Article  Google Scholar 

  69. [69] P. Bellen, K. C. Hari Kumar, and P. Wollants: Z. Metallkd., 1996, vol. 87, no. 12, pp. 972-978.

    Google Scholar 

  70. [70] C. P. Wang, Y. He, H. L. Zhang, and X. J. Liu: J. Alloys Compd., 2009, vol. 487, pp. 126-131.

    Article  Google Scholar 

  71. [71] P. Gustafson, A. Gabriel, and I. Ansara: Z. Metallkd., 1987, vol. 78, no. 2, pp. 151-156.

    Google Scholar 

  72. [72] Z. Du, D. Wang, and W. Zhang: J. Alloys Compd., 1998, vol. 264, pp. 209-213.

    Article  Google Scholar 

  73. [73] W. Xiong, H. Xu, and Y. Du: CALPHAD, 2011, vol. 35, pp. 276-283.

    Article  Google Scholar 

  74. [74] N. Wang, C. R. Li, Z. M. Du, and F. Wang: CALPHAD, 2007, vol. 31, pp. 413-421.

    Article  Google Scholar 

  75. [75] W. J. Zhu, H. S. Liu, J. S. Wang, H. Q. Dong, Z. P. Jin: J. Alloys Compd., 2009, vol. 481, pp. 503-508.

    Article  Google Scholar 

  76. [76] H. Ohtani, M. Yamano, and M. Hasebe: CALPHAD, 2004, vol. 28, pp. 177-190.

    Article  Google Scholar 

  77. H. Okamoto, T.B. Massaiski, M. Hasebe, and T. Nishizawa (1985) Bull. Alloy Phase Diagr., 6(5):449-454.

    Article  Google Scholar 

  78. [78] Y. Du, J. C. Schuster, Y. A. Chang, Z. Jin, and B. Huang: Z. Metallkd., 2002, vol. 93, no. 11, pp. 1157-1163.

    Article  Google Scholar 

  79. [79] X. Su, W. Zhang, and Z. Du: J. Alloys Compd., 1998, vol. 267, pp. 121-127.

    Article  Google Scholar 

  80. [80] A. Kusoffsky, and B. Jansson: CALPHAD, 1997, vol. 21, no. 3, pp. 321-333.

    Article  Google Scholar 

  81. J. Kubišta, and J. Vřeštál (2000) J. Phase Equilib., vol. 21, no. 2, pp. 125-129.

    Article  Google Scholar 

  82. [82] I. Ohnuma, H. Enoki, O. Ikeda, R. Kainuma, H. Ohtani, B. Sundman, and K. Ishida: Acta Mater., 2002, vol. 50, pp. 379-393.

    Article  Google Scholar 

  83. [83] A. Chari, A. Garay, and R. Arróyave: CALPHAD, 2010, vol. 34, pp. 189-195.

    Article  Google Scholar 

  84. [84] Z. K. Liu, W. Zhang, and B. Sundman: J. Alloys Compd., 1995, vol. 226, pp. 33-45.

    Article  Google Scholar 

  85. [85] C. P. Wang, J. Wang, X. J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida: J. Alloys Compd., 2008, vol. 453, pp. 174-179.

    Article  Google Scholar 

  86. [86] W. M. Huang: CALPHAD, 1989, vol. 13, no. 3, pp. 231-242.

    Article  Google Scholar 

  87. [87] A. Davydov, and U. R. Kattner: J. Phase Equilib., 1999, vol. 20, no. 1, pp. 5-16.

    Article  Google Scholar 

  88. K.C. HariKumar, I. Ansara, P. Wollants, and L. Delaey (1998) J. Alloys Compd. vol. 267, pp. 105-112.

    Article  Google Scholar 

  89. [89] D. E. Kim, J. E. Saal, L. C. Zhou, S. L. Shang, Y. Du, and Z. K. Liu: CALPHAD, 2011, vol. 35, pp. 323-330.

    Article  Google Scholar 

  90. [90] Y. Zhang, C. Li, Z. Du, and T. Gang: CALPHAD, 2008, vol. 32, pp. 56-63.

    Article  Google Scholar 

  91. [91] L. J. Zhang, Y. Du, H. H. Xu, and Z. Pan: CALPHAD, 2006, vol. 30, pp. 470-481.

    Article  Google Scholar 

  92. [92] M. Jiang, J. Sato, I. Ohnuma, R. Kainuma, and K. Ishida: CALPHAD, 2004, vol. 28, pp. 213-220.

    Article  Google Scholar 

  93. [93] Z. K. Liu, and Y. A. Chang: CALPHAD, 1999, vol. 23, no. 3-4, pp. 339-356.

    Article  Google Scholar 

  94. [94] G. Cacciamani, R. Ferro, I. Ansara, and N. Dupin: Intermetallics, 2000, vol. 8, pp. 213-222.

    Article  Google Scholar 

  95. [95] J. Wang, X. J. Liu, and C. P. Wang: J. Nucl. Mater., 2008, vol. 374, pp. 79-86.

    Article  Google Scholar 

  96. [96] S. Huang, L. Li, O. Van der Biest, and J. Vleugels: J. Alloys Compd., 2004, vol. 385, pp. 114-118.

    Article  Google Scholar 

  97. [97] A. F. Guillermet: Metall. Trtrans. A, 1989, vol. 20, no. 5, pp. 935-956.

    Article  Google Scholar 

  98. [98] Z. Du, and D. Lu: J. Alloys Compd., 2004, vol. 373, pp. 171-178.

    Article  Google Scholar 

  99. [99] I. Isomäki, and M. Hämäläinen: J. Alloys Compd., 2004, vol. 375, pp. 191-195.

    Article  Google Scholar 

  100. [100] A. Durga, and K. C. Hari Kumar: CALPHAD, 2010, vol. 34, pp. 200-205.

    Article  Google Scholar 

  101. [101] Z. Du, and D. Lü: Intermetallics, 2005, vol. 13, pp. 586-595.

    Article  Google Scholar 

  102. [102] A. F. Guillermet: CALPHAD, 1989, vol. 13, no. 1, pp. 1-22.

    Article  Google Scholar 

  103. [103] K. T. Jacob, S. Srikanth, and G. N. K. Iyengar: Bull. Mater. Sci., 1986, vol. 8, no. 1, pp. 71-79.

    Article  Google Scholar 

  104. [104] A. T. Dinsdale: CALPHAD, 1991, vol. 15, no. 4, pp. 317-425.

    Article  Google Scholar 

  105. [105] R. T. Holt and W. Wallace: Int. Met. Rev., 1976, vol. 21, no. 1, pp. 1-24.

    Article  Google Scholar 

  106. A.V. Naumov (2007) Russ. J. Non-Ferrous Met., vol. 48, no. 6, pp. 418-423.

    Article  Google Scholar 

  107. D.R. Leal-Ayala, J.M. Allwood, E. Petavratzi, T.J. Brown, and G. Gunn (2015) Resour., Conserv. Recycl., vol. 103, pp. 19-28.

    Article  Google Scholar 

  108. [108] G. Li, F. Tsukihashi: ISIJ Int., 2001, vol. 41, no. 11, pp. 1303-1308.

    Article  Google Scholar 

  109. R.U. Pagador, M. Hino, and K. Itagaki (1999) Mater. Trans. JIM, vol. 40, no. 3, pp. 225-232.

    Article  Google Scholar 

  110. [110] H. M. Henao, M. Hino, and K. Itagaki: Mater. Trans., 2001, vol. 42, no. 9, pp. 1959-1966.

    Article  Google Scholar 

  111. [111] H. M. Henao, and K. Itagaki: Metall. Mater. Trans. B, 2004, vol. 35, pp. 1041-1049.

    Article  Google Scholar 

  112. J. Hait, R.K. Jana, and S.K. Sanyal (2009) Trans. Inst. Min. Metall. Sect. C, vol. 118, no. 4, pp. 240-252.

    Google Scholar 

  113. [113] A. T. Ali, K. S. Rao, C. Laxman, N. R. Munirathnam, and T. L. Prakash: Sep. Purif. Technol., 2012, vol. 85, pp. 178-182.

    Article  Google Scholar 

  114. [114] S. Itoh, A. Tsubone, K. Matsubae-Yokoyama, K. Nakajima, and T. Nagasaka: ISIJ Int., 2008, vol. 48, no. 10, pp. 1339-1344.

    Article  Google Scholar 

  115. [115] K. Nakajima, K. Matsubae-Yokoyama, S. Nakamura, S. Itoh, and T. Nagasaka: ISIJ Int., 2008, vol. 48, no. 10, pp. 1478-1483.

    Article  Google Scholar 

  116. [116] S. Nakamura, and E. Yamasue: Environ. Sci. Technol., 2010, vol. 44, pp. 4402-4408.

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Japan Society for the Promotion of Science (JSPS KAKENHI Grand No.: 14J03293). The authors also thank the Ministry of Education, Culture, Sports, Science and Technology, Japan for providing one of the authors (Xin Lu) with the Japanese Government (MONBUKAGAKUSHO) Scholarship (Registered No.: 123032) during his doctoral course.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Lu.

Additional information

Manuscript submitted February 1, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Matsubae, K., Nakajima, K. et al. Thermodynamic Considerations of Contamination by Alloying Elements of Remelted End-of-Life Nickel- and Cobalt-Based Superalloys. Metall Mater Trans B 47, 1785–1795 (2016). https://doi.org/10.1007/s11663-016-0665-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0665-2

Keywords

Navigation