Skip to main content

A Size-Dependent Thermodynamic Model for Coke Crystallites: The Carbon-Sulfur System Up to 2500 K (2227 °C)

Abstract

A model is presented for the development of the thermodynamic functions of enthalpy, entropy, and Gibbs energy for the elements carbon and sulfur in coke crystallites. The crystallites of various degrees of graphitization may be described by crystallite length L a and crystallite height L c. This carbon/sulfur model has been developed using concepts similar to those in the carbon/hydrogen model for coke crystallites. The major model parameters are derived from reported thermodynamic properties. Approximately 75 pct of the model parameters for the carbon/hydrogen and carbon/sulfur system are parameters common to both systems. The resulting crystallite size (L a) constrained in the carbon/sulfur phase diagram, computed by a Gibbs energy minimization technique, is presented for 1 atm and temperatures between 1500 K and 2500 K (1227 °C and 2227 °C). A very good agreement is obtained between the predicted thermal desulfurization of petroleum cokes and critically assessed experimental data. The removal of sulfur from coke crystallites is predicted to occur mostly between 1600 K and 1850 K (1327 °C and 1577 °C) at 1 atm, depending on the L a value. The precision in the predictive calculations and the transferability of the model parameters are two aspects that tend to support the usefulness and the theoretical basis of the entire approach.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    L.C. Edwards, K.J. Neyrey, and L.P. Lossius: Light Metals, 2007, pp. 895–900.

  2. 2.

    E.E. Hardin, C.L. Beilharz, and L.L. Melvin: Light Metals, 1993, pp. 501–8.

  3. 3.

    E.E. Hardin, P.J. Ellis, C.L. Beilharz, and L. McCoy: Light Metals, 1994, pp. 571–81.

  4. 4.

    F. Vogt, R. Tonti, M. Hunt, and L. Edwards: Light Metals, 2004, pp. 489–93.

  5. 5.

    L. Edwards, N. Backhouse, H. Darmstadt, and M.J. Dion: Light Metals, 2012, pp. 1207–12.

  6. 6.

    Z. Guo, Z. Fu and S. Wang: Fuel Processing Technology, 2007, vol. 88, pp. 935-41.

    Article  Google Scholar 

  7. 7.

    H. Al-Haj-Ibrahim and B.I. Morsi: Industrial & Engineering Chemistry Research, 1992, vol. 31, pp. 1835-40.

    Article  Google Scholar 

  8. 8.

    A. Gagnon, N. Backhouse, H. Darmstadt, E. Ryan, L. Dyer, and D.G. Dixon: Light Metals, 2013, pp. 1057–62.

  9. 9.

    H. Al-Haj-Ibrahim and M.M. Ali: Periodica Polytecnica Chemical Engineering, 2004, vol. 48, pp. 53-62.

    Google Scholar 

  10. 10.

    P. Ouzilleau, A.E. Gheribi, G. Eriksson, D.K. Lindberg and P. Chartrand: Carbon, 2015, vol. 85, pp. 99-118.

    Article  Google Scholar 

  11. 11.

    M. Hillert and L.I Staffansson: Acta Chem. Scand., 1970, vol. 24, pp. 3618–26.

  12. 12.

    B. Sundman and J. Aagren: Journal of Physics and Chemistry of Solids, 1981, vol. 42, pp. 297-301.

    Article  Google Scholar 

  13. 13.

    J.M. Jimenez Mateos, E. Romero, and C. Gomez de Salazar: Carbon, 1993, vol. 31, pp. 1159–78.

  14. 14.

    Z.Q. Li, C.J Lu, Z.P. Xia, Y. Zhou and Z. Luo : Carbon, 2007, vol. 45, pp. 1686-95.

    Article  Google Scholar 

  15. 15.

    E. Fitzer and S. Weisenburger: Carbon, 1976, vol. 14, pp. 195-8.

    Article  Google Scholar 

  16. 16.

    S.R. Brandtzaeg and H.A. Oye: Carbon, 1988, vol. 26, pp.163-8.

    Article  Google Scholar 

  17. 17.

    Y. Sugimoto, F.J. Derbyshire and A.W. Scaroni: Carbon, 1985, vol. 23, pp. 411-6.

    Article  Google Scholar 

  18. 18.

    R.E. Franklin: Acta Crystallographica, 1951, vol. 4, pp. 253-61.

    Article  Google Scholar 

  19. 19.

    M. Hasegawa and K. Nishidate: Phys. Rev. B, 2004, vol. 79, pp. 205431/1–205431/7.

  20. 20.

    X. Bourrat, A. Oberlin and J.C. Escalier : Fuel, 1987, vol. 66, pp. 542-50.

    Article  Google Scholar 

  21. 21.

    S.J. Hay, J.B. Metson and M.M. Hyland: Industrial and Engineering Chemistry Research, 2004, vol. 43, pp. 1690-700.

    Article  Google Scholar 

  22. 22.

    J.H. Cai, E. Morris and C.Q. Jia: Journal of Sulfur Chemistry, 2009, vol. 30, pp. 555-69.

    Article  Google Scholar 

  23. 23.

    J.J. Adjizian, C. Latham, S. Oberg, P.R. Briddon and M.I. Heggie: Carbon, 2013, vol. 62, pp. 256-62.

    Article  Google Scholar 

  24. 24.

    P. Rhedey: Transaction of the Metallurgical Society of AIME, 1967, vol. 239, pp. 1084-91.

    Google Scholar 

  25. 25.

    M.K. Hussein, S.Z. El-Tawil and M.A. Rabah: Journal of the Institute of Fuel, 1976, vol. 49, pp. 139-43.

    Google Scholar 

  26. 26.

    D.R. Stull and H. Prophet: JANAF Thermochemical Tables, U.S. Department of Commerce, Washington, 1985.

    Google Scholar 

  27. 27.

    H.C. Longuet-Higgins : Transactions of the Faraday Society, 1949, vol. 45, pp. 173-9.

    Article  Google Scholar 

  28. 28.

    S. Umezono and T. Okuno: Acta Crystallographica Section E, 2012, vol. 68, p. o2790.

    Article  Google Scholar 

  29. 29.

    C.L. Yaws: Yaws’ Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals, Knovel, 2009.

  30. 30.

    N.W. Winter and F.H. Ree: Journal of Computer-Aided Materials Design, 1988, vol. 5, pp. 279-94.

    Article  Google Scholar 

  31. 31.

    R. Heyrovska: arXiv.org e-Print Archive Physics, 2008, pp. 1–11.

  32. 32.

    Y.R. Luo: Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press LLC, Boca Raton, FL, 2003.

  33. 33.

    W.M. Haynes: CRC Handbook of Chemistry and Physics, 93rd ed., Taylor and Francis Group LLC, 2013, pp. 197–199.

  34. 34.

    M. Scheer, R.C. Bilodeau, C.A. Brodie and H.K. Haugen: Physical Review A, 1998, vol. 58, pp. 2844-56.

    Article  Google Scholar 

  35. 35.

    I. Lukovits: J. Chem. Inf. Comput. Sci., 2004, vol. 44, pp. 1565-70.

    Article  Google Scholar 

  36. 36.

    S.M. Mukherji, S.P. Singh, R.P. Kapoor, and R. Dass: Organic Chemistry, vol. I., New Age Internationnal, 2010.

  37. 37.

    C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Mahfoud et al.: CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2002, vol. 26, pp. 189-228.

    Article  Google Scholar 

  38. 38.

    C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack et al.: CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, vol. 33, pp. 295-311.

    Article  Google Scholar 

  39. 39.

    J. Abrahamson: Carbon, 1973, vol. 11, pp. 337-62.

    Article  Google Scholar 

  40. 40.

    M. Legin-Kolar: Carbon, 1992, vol. 30, pp. 613-8.

    Article  Google Scholar 

  41. 41.

    M.P. Whittaker and L.I. Grindstaff: Carbon, 1969, vol. 7, pp. 615-21.

    Article  Google Scholar 

  42. 42.

    C.A. Paul and L.E. Herrington: Light Metals, 2001, pp. 597–601.

  43. 43.

    N. El-Kaddah, S.Y. Ezz: Fuel, 1973, vol. 52, pp.128-9.

    Article  Google Scholar 

  44. 44.

    S.R. Brandtzaeg and H.A. Oeye: Light Metals, 1985, pp. 839–52.

  45. 45.

    S.R. Brandtzaeg and H.A. Oye: Light Metals, 1986, vol. 2, pp. 593-604.

    Google Scholar 

  46. 46.

    J.N. Rouzeau and A. Oberlin: Carbon, 1989, vol. 27, pp. 517-29.

    Article  Google Scholar 

  47. 47.

    M. Inagaki and F. Kang: Carbon Materials Science and Engineering-from Fundamental to Applications, Tsinghua University Press, 2006.

  48. 48.

    B.P. Richards: J. Appl. Cryst., 1968, vol. 1, pp. 35-48.

    Article  Google Scholar 

  49. 49.

    K. Kobayashi, S. Sugawara, S. Toyoda and H. Honda: Carbon, 1968, vol. 6, pp. 359-63.

    Article  Google Scholar 

  50. 50.

    A. Radenovic, M. Legin-Kolar and D. Ugarkovic: Fuel, 1996, vol. 75, pp. 613-16.

    Article  Google Scholar 

  51. 51.

    S.R. Brandtzaeg: Structural Changes During Calcination of Coke and Anthracite. Trondheim NORWAY, Norwegian Institute of Technology, Ph D., 1985.

  52. 52.

    M.L. Pearce and E.A. Heintz: Journal of Physical Chemistry, 1966, vol. 70, pp. 1935-42.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. James M. Sangster for his participation in the review of this paper. This project was supported by the Natural Sciences and Engineering Research Council of Canada, Alcoa, Hydro Aluminum, and Rio Tinto Alcan. Mr. Ouzilleau also acknowledges Rio Tinto Alcan for a scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrice Chartrand.

Additional information

Manuscript submitted April 8, 2015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ouzilleau, P., Gheribi, A.E., Lindberg, D.K. et al. A Size-Dependent Thermodynamic Model for Coke Crystallites: The Carbon-Sulfur System Up to 2500 K (2227 °C). Metall Mater Trans B 47, 1817–1831 (2016). https://doi.org/10.1007/s11663-016-0643-8

Download citation

Keywords

  • Desulfurization
  • Petroleum Coke
  • Methyl Mercaptan
  • Pitch Coke
  • Thermodynamic Path