Skip to main content
Log in

Direct Electrolytic Reduction of Solid Ta2O5 to Ta with SOM Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A process that uses the solid-oxide–oxygen-ion conducting membrane has been investigated to produce tantalum directly from solid Ta2O5 in molten CaCl2 or a molten mixture of 55.5MgF2-44.5CaF2 (in wt pct). The sintered porous Ta2O5 pellet was employed as the cathode, while the liquid copper alloy, saturated with graphite powder and encased in a one-end-closed yttria-stabilized-zirconia (YSZ) tube, acted as the anode. The electrolysis potential in this method is higher than that of the Fray–Farthing–Chen Cambridge process because the YSZ membrane tube blocks the melts to electrolyze, and only Ta2O5 is will be electrolyzed. The microstructures of reduced pellets and a cyclic voltammogram of solid Ta2O5 in molten CaCl2 were analyzed. In addition, the influence of particle size and porosity of the cathode pellets on metal-oxide-electrolyte, three-phase interlines was also discussed. The results demonstrate that the sintering temperature of cathode pellets and electrolytic temperature play important roles in the electrochemical process. Furthermore, this process can be used to produce Ta metal efficiently without the expensive cost of pre-electrolysis and generation of harmful by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\( \Theta_{\text{a}} \) :

Length of the ideal 3PIs (m)

A :

Cross-section area of the pellet (m2)

δ :

Porosity of the pellet (percent)

γ :

Average particle size of the pellet (m)

L :

Half of pellet thickness (m)

x :

Position along the thickness direction of the pellet, 0 ≤ x ≤ L (m)

t :

Electrolysis time, t ≤ 2 hours (minutes)

n :

Shape factor of the pellet, n ≥ 2 (−)

References

  1. 1. F. Cardarelli, P. Taxil, A. Savall, C. Comninellis, G. Manoli, and O.Leclerc: J. Appl. Electrochem., 1998, vol. 28, pp. 245-54

    Article  Google Scholar 

  2. 2. L. Massot, P. Chamelot, P. Palau, and P. Taxil: Electrochim. Acta, 2005, vol. 50, pp. 5408-13

    Article  Google Scholar 

  3. 3. M. Baba, Y. Ono, and R.O. Suzuki: J. Phys. Chem. Solids, 2005, vol. 66, pp. 466-70

    Article  Google Scholar 

  4. 4. M.A. Hunter: J. Metals., 1953, vol. 5, pp. 130-2

    Google Scholar 

  5. 5. Π. Park, T.H. Okabe, and Y. Waseda: J. Alloys Comp., 1998, vol. 280, pp. 265-72

    Article  Google Scholar 

  6. 6. H. Niiyama, Y. Tajima, F. Tsukihashi, and N. Sano: J. Alloys Comp., 1991, vol. 169, pp. 209-16

    Google Scholar 

  7. 7. A. Krishnan, X.G. Lu, and U.B. Pal: Scand. J. Metall., 2005, vol. 34, pp. 1-9

    Article  Google Scholar 

  8. 8. G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361-4

    Article  Google Scholar 

  9. 9. G.Z. Chen, D.J. Fray, and J. Electro: Chem. Soc., 2002, vol. 149, pp. 455-67

    Google Scholar 

  10. 10. G.Z. Chen, E. Gordo, and D.J. Fray: Metall. Mater. Trans. B, 2004, vol. 35, pp. 223-33

    Article  Google Scholar 

  11. 11. X. Van and D. Fray: Metall. Mater. Trans. B, 2002, vol. 33, pp. 685-93

    Google Scholar 

  12. 12. D.T.L. Alexander, C. Schwandt, and D.J. Fray: Acta Mater., 2006, vol. 54, pp. 2933-44

    Article  Google Scholar 

  13. 13. R. Enmei, T. Kikuchi, and R.O. Suzuki: Electrochimica Acta, 2013, vol. 100, pp. 257-60

    Article  Google Scholar 

  14. 14. X. Jin, P. Gao, D. Wang, X. Hu, and G.Z. Chen: Angew. Chem. Int. Edit., 2004, vol. 43, pp. 733-6

    Article  Google Scholar 

  15. 15. U.B. Pal, D.E. Woolley, and G.B. Kenney: J. Metals, 2001, vol. 10, pp. 32-6

    Google Scholar 

  16. 16. U.B. Pal, D.E. Woolley, A. Krishnan, T. Keenan, C.P. Manning, and G.B. Kenney: Magnesium Technology, TMS, Warrendale, PA, 2002, p. 19-24

    Google Scholar 

  17. 17. C.Y. Chen, X.G. Lu, and Q. Li et al.: Chin. J. Rare Metals. (in Chinese), 2007, vol. 31, pp. 306-10

    Google Scholar 

  18. 18. U.B. Pal, A. Krishnan, and X.G. Lu: JOM, 2004, vol. 56, pp. 245-53

    Google Scholar 

  19. 19. C.Y. Chen and X.G. Lu: Acta Metall. Sin. (in Chinese), 2008, vol. 44, pp. 163-7

    Google Scholar 

  20. 20. A. Krishnan: Solid Oxide Membrane Process for The Direct Reduction of Magnesium from Magnesium Oxide, Boston University, Boston, MA, 2006, pp. 25–49

    Google Scholar 

  21. 21. H.W. Cheng, X.G. Lu, Q. Li, J.M. Liu, W.Z. Ding, and G.Z. Zhou: Acta Metall. Sin. (in Chinese), 2006, vol. 42, pp. 500-05

    Google Scholar 

  22. 22. R.O. Suzuki, M. Baba, Y. Ono, and K. Yamamoto: J. Alloys Comp., 2005, vol. 389, pp. 310-6

    Article  Google Scholar 

  23. 24. E. Gordo, G.Z. Chen, and D.J. Fray: Electrochim. Acta, 2004, vol. 49, pp. 2195-2208

    Article  Google Scholar 

  24. 25. X.F. Hu and Q. Xu: Acta Metall. Sin. (in Chinese), 2006, vol. 42, pp. 285-9

    Google Scholar 

  25. 26. X.Z. Xu, M. Zhu, and J.M. Yang: Eng. Sci. (in Chinese), 2005, vol. 7, pp. 36-41

    Google Scholar 

  26. 27. T. Wu, X.B. Jin, W. Xiao, X.H. Hu, D.H. Wang, and G.Z. Chen: Chem. Mater., 2007, vol. 19, pp. 153-60

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Nos. 51264006, 51474079, 51574095), the Basic Research Program of Guizhou Provincial Education Department (No. 20120002), and the Industrial Projects Guiyang Municipal Science and Technology Bureau ([2012103]69, [2012205]64), KY(2015)334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufeng Yang.

Additional information

Manuscript submitted April 24, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Yang, X., Li, J. et al. Direct Electrolytic Reduction of Solid Ta2O5 to Ta with SOM Process. Metall Mater Trans B 47, 1727–1735 (2016). https://doi.org/10.1007/s11663-016-0633-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0633-x

Keywords

Navigation