Skip to main content
Log in

Testing and Characterization of Anode Current in Aluminum Reduction Cells

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Anode current is an important parameter in the aluminum reduction process, but to test the anode current accurately is difficult at present. This study tested the individual anode current using the fiber-optic current sensor. The testing results show that this method can effectively avoid the interference of the electromagnetic field, and the current is measured with high precision which error is less than 1 pct. In the paper, the test currents under different cell conditions, including anode changing, metal tapping, abnormal current, and anode effect, are investigated using the method of time-domain and frequency-domain analysis, and the simulation method is also combined to investigate the cell conditions. The results prove that different cell conditions will show different anode current characteristics, and the individual current can monitor the cell conditions, especially the localized cell conditions. Some abnormal cell conditions can be found through anode current rather than cell voltage. The anode current can also be used for early detection of anode effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. A. Agnihotri, S. U. Pathak, and J. Mukhopadhyay: Trans. Indian. Inst. Met., 2014, vol.67(2), pp. 275–83.

    Article  Google Scholar 

  2. P. Leonardo, Y. Jean, A. C. Roberta, and C. Araujo-Jeronimo: Light Metals 2005, TMS, Warrendale, PA, 2005, pp. 419–22.

  3. V. Yurkov, V. Mann, T. Piskazhova, K. Nikandrov, and O. Trebukh: Light Metals 2002, TMS, Warrendale, PA, 2002, pp. 383–88.

  4. C. Cheung, C. Menictas, J. Bao, M. Skyllas-Kazacos, and B. J. Welch: Light Metals 2013, TMS, Warrendale, PA, 2013, pp. 887–92.

  5. C. Cheung, C. Menictas, J. Bao, M. Skyllas-Kazacos, and B. J. Welch: Ind. Eng. Chem. Res., 2013, vol. 52, pp. 9632-9644.

    Article  Google Scholar 

  6. H. Li, X. Yin, Y. Huang, L. Ding, and C. Jiang: CIESC J., 2011, vol. 62(6), pp. 1770–77 (in chinese).

    Google Scholar 

  7. J. T. Keniry, G. C. Barber, M. P. Taylor, and B. J. Welch: Light Metals 2001, TMS, Warrendale, PA, 2001, pp. 1225–32.

  8. J. Keniry and E. Shaidulin: Light Metals 2008, TMS, Warrendale, PA, 2008, pp. 287−92.

  9. A. Lutzerath, J. W. Evans, and R. Victor: Light Metals 2014, TMS, Warrendale, PA, 2014, pp. 739–41.

  10. N. Urata and J. W. Evans: Light Metals 2010, TMS, Warrendale, PA, 2010, pp. 473–78.

  11. D. Steingart, J. W. Evans, P. Wright, and D. Ziegler: Light Metals 2008, TMS, Warrendale, PA, 2008, pp. 333–38.

  12. J. W. Evans and N. Urata: Light Metals 2012, TMS, Warrendale, PA, 2012, pp. 939–42.

  13. Y. Dong, J. Zhou, M. Li, Y. Zhou, and J. Yang: CIESC J., 2013, vol. 64(10), PP. 3701–07. (in chinese).

    Google Scholar 

  14. Y. Dong, J. Zhou, M. Li, Y. Zhou, S. Zhan, J. Yang: Chin. J. Nonferrous Met, 2013, vol. 23(8), pp. 2302–08. (in chinese).

  15. R. Zhao, J. Zi, Z. Zhang, J. Tie: Nonferrous Metals (Extractive Metallurgy), 2014, vol. 3, pp. 14-17. (in chinese).

    Google Scholar 

  16. Y. Wang, J. Tie, G. Tu, S. Sun, R. Zhao, and Z. Zhang: Light Metals 2014, TMS, Warrendale, PA, 2014, pp. 697–702.

  17. Y. Wang, J. Tie, G. Tu, S. Sun, R. Zhao, and Z. Zhang: Trans. nonferrous Met. Soc. China, 2015, vol. 25, pp. 335-344.

    Article  Google Scholar 

  18. Y. Wang, J. Tie, S. Sun, G. Tu, Z. Zhang, and R. Zhao: Trans. Indian. Inst. Met., 2015, vol. 68(3), pp. 443-451.

    Article  Google Scholar 

  19. K. Bohnert, P. Gabus, J. Nehring, and H. Brandle: J. Lightwave Technol., 2002, vol. 20(2), pp.267-270.

    Article  Google Scholar 

  20. Z. Wang, C. Kang, X. Zhang, Z. Zheng, H. Lin, H. Zeng, H. Yang, and Q. Wang: Laser Optoelectron. Prog., 2005, vol. 42(3), pp. 36-40. (in chinese).

    Google Scholar 

  21. C. Leung: NDT & E Int., 2001, vol. 34(2), pp. 85-94.

    Article  Google Scholar 

  22. J. Zoric, and A. Solheim: J. Appl. Electrochem., 2000, vol. 30, pp. 787-794.

    Article  Google Scholar 

  23. L. Ding, S. Zeng, and Z. Zeng: Instrum. Meas., 2005, vol. 24(12), pp. 68–70. (in chinese).

    Google Scholar 

  24. H. Li, X. Yin, L. Wei, Y. Huang, Q. Tang, and F. Shan: Chin. J. Nonferrous Met, 2010, vol. 20(5), pp. 999–1005. (in chinese).

  25. S. Poncsák, L. Kiss, D. Toulouse, A. Perron, and S. Perron: Light Metals 2006, TMS, Warrendale, PA, 2006, pp. 457–61.

  26. W. Haupin, and E. J. Seger: Light Metals 2001, TMS, Warrendale, PA, 2001, pp. 329–35.

  27. B. Sulmont, S. Fardeau, E. Barrioz, and P. Marcellin: Light Metals 2006, TMS, Warrendale, PA, 2006, pp. 325–29.

  28. F. Costa, L. Paulino, C. Braga, R. Ramada, and I. Sousa: Light Metals 2012, TMS, Warrendale, PA, 2012, pp. 655–56.

  29. G. Tarcy, and Al. Tabereaux: Light Metals 2011, TMS, Warrendale, PA, 2011, pp. 329–32.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongliang Wang.

Additional information

Manuscript submitted May 25, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tie, J., Sun, S. et al. Testing and Characterization of Anode Current in Aluminum Reduction Cells. Metall Mater Trans B 47, 1986–1998 (2016). https://doi.org/10.1007/s11663-016-0632-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0632-y

Keywords

Navigation