Skip to main content
Log in

Thermal Decoating of Aerospace Aluminum Alloys for Aircraft Recycling

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Recycling of aircraft aluminum alloys can be complex due to the presence of their corrosion protection coating that includes inorganic compounds containing Cr(VI). In this study, the characterization and thermal degradation behavior of the coating on aluminum substrates coming from an aircraft destined for recycling are presented. Elements such as Sr, Cr, Si, Ba, Ti, S, C, and O were found in three different layers by EDS elemental mapping corresponding to SrCrO4, Rutile-TiO2, SiO2, and BaSO4 with an overall particle size D 50 = 1.96 µm. The thermal degradation profile analyzed by TGA showed four different stages. The temperature of complete degradation at the fourth stage occurred at 753.15 K (480 °C) at lower heating rates. At higher heating rates and holding an isotherm at the same temperature, the residence time to fully decompose the aircraft coating has been estimated as 4.0 ± 0.2 minutes. The activation energy calculated by the Flynn–Wall–Ozawa and the modified Coats-Redfern methods for multiple fraction of decomposition showed a non-constant behavior indicating the complexity of the reaction. Finally, the concentration of Cr(VI) released to the environment during thermal decoating was obtained by UV–Vis spectroscopy. It was found that 2.6 ± 0.1 µg of Cr(VI)/mm2 of aluminum substrate could be released unless adequate particle controls are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The crystalline phases were identified using the JCPDS cards 00-004-0787, 00-021-1276, 00-035-0743, and 01- 085-0457 from the PANanalytical X'pert high-score plus ICDD PDF 2003 database.

References

  1. U.S. Geological Survey, Mineral Commodity Summaries 2012: U.S. Geological Survey. 198, Reston, Virgina, 2012.

  2. 2. Das, S.K. and W. Yin, JOM, 2007. Vol. 59(11): p. 57-63.

    Article  Google Scholar 

  3. J.A.S. Green: Aluminum Recycling and Processing for Energy Conservation and Sustainability. 1-271, ASM International, Materials Park, 2007.

  4. M. Nancy: Energy and Environmental Profile of the U.S. Aluminum Industry, Prepared for the U.S. Department of Energy Office of Industrial Technologies. Energetics, INC., Columbia, Maryland, 1997.

  5. 5. Kvithyld, A., Meskers, C. E. M., Gaal, S., Reuter, M., Engh, T., JOM, 2008. Vol. 60(8): p. 47-51.

    Article  Google Scholar 

  6. 6. Schlesinger, M.E., Ilegbusi, O.J., Iguchi, M., Wahnsiedler, W., Aluminum Recycling. CRC PressINC, United States, 2007.

    Google Scholar 

  7. 7. Meskers, C.E.M., Reuter, M. A., Boin, U., Kvithyld, A., Metall. Mater. Trans. B, 2008. Vol. 39(3): p. 500-517.

    Article  Google Scholar 

  8. A. Kvithyld, S. Gaal, P. Kowalewski, and T.A. Engh: TMS Annual Meeting & Exhibition, 2003, pp. 1091–95.

  9. A. Kvithyld, T.A. Engh, and R. Illes: TMS Annual Meeting & Exhibition, 2002, pp. 1055–60.

  10. A. Kvithyld, J. Kaczorowski, and T.A. Engh, TMS Annual Meeting & Exhibition, 2004, pp. 151–56.

  11. X. Zuo and L. Zhang: TMS Annual Meting & Exhibition, 2008, pp. 1107–12.

  12. Z. Itzkowitch: 1ere PIateforme europeenne de demantelement aeronautique, Dossier de presse Bartin AERO Recycling, 2008.

  13. 13. Asmatulu, E., M. Overcash, and J. Twomey, J. Ind. Eng., 2013. Vol. 2013: p. 1-8.

    Google Scholar 

  14. 14. Chattopadhyay, A.K. and M.R. Zentner, Aerospace and aircraft coatings. Federation of Societies for Coatings Technology, Philadelphia, PA, 1990.

    Google Scholar 

  15. 15. Lytle, F.W., Greegor, R. B., Bibbins, G. L., Blohowiak, K. Y., Smith, R. E., Tuss, G. D., Corros. Sci., 1995. Vol. 37(3): p. 349-369.

    Article  Google Scholar 

  16. 16. Yu, Z., Ni, H., Zhang, G., Wang, Y., Dong, S., Zhao, G., Appl. Surf. Sci., 1992. Vol. 62(4): p. 217-221.

    Article  Google Scholar 

  17. 17. Sinko, J., Prog. Org. Coat., 2001. Vol. 42(34): p. 267-282.

    Article  Google Scholar 

  18. 18. Bierwagen, G.P. and D.E. Tallman, Prog. Org. Coat., 2001. Vol. 41(4): p. 201-216.

    Article  Google Scholar 

  19. 19. LaPuma, P.T., Fox, J. M., Kimmel, E. C., Regul. Toxicol. Pharm., 2001. Vol. 33(3): p. 343-349.

    Article  Google Scholar 

  20. Occupational Safety and health administration (OSHA), Standard29 CFR number 1910.1026, Cr(VI).

  21. 21. Farrier, L.M. and S.L. Szaruga, Mater. Charact., 2005. Vol. 55(3): p. 179-189.

    Article  Google Scholar 

  22. 22. Bauer, J.P. and E.N. Ruddy, Metal finishing, 1996. Vol. 94(4): p. 28-39.

    Article  Google Scholar 

  23. 23. Köhler, K., Simmendinger, P., Roelle, W., Scholz, W., Valet, A., Slongo, M., Paints and Coatings, 4. Pigments, Extenders, and Additives. Wiley-VCH Verlag GmbH & Co. KGaA, 2000.

    Google Scholar 

  24. 24. Scholes, F.H., Furman, S. A., Hughes, A. E., Nikpour, T., Wright, N., Curtis, P. R., Macrae, C. M., Intem, S., Hill, A. J., Prog. Org. Coat., 2006. Vol. 56(1): p. 23-32.

    Article  Google Scholar 

  25. Pashaei, S., Siddaramaiah, A., and A.A. Syed, J. Macromol. Sci., Part A: Pure Appl.Chem., 2010. Vol. 47(8): p. 777-783

    Article  Google Scholar 

  26. 26. Petrović, Z.S., Zavargo, Z., Flyn, J.H., Macknight, W. J., J. Appl. Polym. Sci., 1994. Vol. 51(6): p. 1087-1095.

    Article  Google Scholar 

  27. 27. Zhang, Y., Xia, Z., Huang, H., Chen, H., J. Anal. Appl. Pyrolysis, 2009. Vol. 84(1): p. 89-94.

    Article  Google Scholar 

  28. 28. Di Nola, G., W. de Jong, and H. Spliethoff, Fuel Process. Technol., 2010. Vol. 91(1): p. 103-115.

    Article  Google Scholar 

  29. 29. Vamvuka, D., Kakaras, E., Kastanaki, E., Grammelis, P., Fuel, 2003. Vol. 82(1517): p. 1949-1960.

    Article  Google Scholar 

  30. 30. Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., Sbirrazzuoli, N., Thermochim. Acta, 2011. Vol. 520(12): p. 1-19.

    Article  Google Scholar 

  31. 31. Flynn, J.H. and L.A. Wall, J Res Nat Bur Stand, 1966. Vol. 70(6): p. 487-523.

    Article  Google Scholar 

  32. 32. Ozawa, T., Bull. Chem. Soc. Jpn., 1965. Vol. 38(11): p. 1881-1886.

    Article  Google Scholar 

  33. 33. Burnham, A.K. and R.L. Braun, Energy & Fuels, 1998. Vol. 13(1): p. 1-22.

    Article  Google Scholar 

  34. 34. Brown, M.E., et al., Thermochim. Acta, 2000. Vol. 355(12): p. 125-143.

    Article  Google Scholar 

  35. 35. Prosek, T. and D. Thierry, Prog. Org. Coat., 2004. Vol. 49(3): p. 209-217.

    Article  Google Scholar 

  36. 36. Furman, S.A., Scholes, F.H., Hughes, A.E. Jamieson, D.N., Macrae, C.M., Glenn, A.M., Corros. Sci., 2006. Vol. 48(7): p. 1827-1847.

    Article  Google Scholar 

  37. 37. Burgio, L. and R.J.H. Clark, Spectrochim. Acta, Part A, 2001. Vol. 57(7): p. 1491-1521.

    Article  Google Scholar 

  38. 38. Mammone, J.F., Sharma, S. K., Nicol, M., Solid State Commun., 1980. Vol. 34(10): p. 799-802.

    Article  Google Scholar 

  39. Lvov BV and VL Ugolkov (2004) Thermochim. Acta. 411(1):73-79.

    Article  Google Scholar 

  40. Stacey J.S., Stevens R., Liu S., Li G., Navrotsky A., Boerio G.J., WoodfieldBrian F., Am. Mineral., 2009. Vol. 94(2-3): p. 236-243

    Google Scholar 

  41. 41. Kotsis, I. and A. Balogh, Ceram. Int., 1989. Vol. 15(2): p. 79-85.

    Article  Google Scholar 

  42. V.T. Athavale and S.K.K. Jatkar: J. Indian Inst. Sci., 1938. vol. 21.

Download references

Acknowledgments

The authors would like to thank the Consortium de Recherche et d’Innovation en Aérospatiale au Québec (CRIAQ), Bombardier, Bell Helicopter, Sotrem-Maltech, BFI, Nano Quebec, and Aluminerie Alouette for their project founding, as well as the Secretary of Public Education of México for the complementary scholarship awarded to one of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Brochu.

Additional information

Manuscript submitted November 21, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñiz Lerma, J.A., Jung, IH. & Brochu, M. Thermal Decoating of Aerospace Aluminum Alloys for Aircraft Recycling. Metall Mater Trans B 47, 1976–1985 (2016). https://doi.org/10.1007/s11663-016-0629-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0629-6

Keywords

Navigation