Skip to main content
Log in

Numerical Investigation on the Impact of Anode Change on Heat Transfer and Fluid Flow in Aluminum Smelting Cells

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In order to understand the impact of anode change on heat transfer and magnetohydrodynamic flow in aluminum smelting cells, a transient three-dimensional (3D) coupled mathematical model has been developed. The solutions of the mass, momentum, and energy conservation equations were simultaneously implemented by the finite volume method with full coupling of the Joule heating and Lorentz force through solving the electrical potential equation. The volume of fluid approach was employed to describe the two-phase flow. The phase change of molten electrolyte (bath) as well as molten aluminum (metal) was modeled by an enthalpy–based technique, where the mushy zone is treated as a porous medium with a porosity equal to the liquid fraction. The effect of the new anode temperature on recovery time was also analyzed. A reasonable agreement between the test data and simulated results is obtained. The results indicate that the temperature of the bath under cold anodes first decreases reaching the minimal value and rises under the effect of increasing Joule heating, and finally returns to steady state. The colder bath decays the velocity, and the around ledge becomes thicker. The lowest temperature of the bath below new anodes increases from 1118 K to 1143 K (845 °C to 870 °C) with the new anode temperature ranging from 298 K to 498 K (25°C to 225°C), and the recovery time reduces from 22.5 to 20 hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\( \vec{A} \) :

Magnetic potential vector (V s)/m

\( A_{\text{mush}} \) :

Mushy zone constant kg/(m3 s)

\( \vec{B} \) :

Magnetic flux density, T

\( c_{\text{p}} \) :

Heat capacity, J/(kg K)

\( \vec{E} \) :

Electric field intensity (N/C)

\( \vec{F}_{\text{e}} \) :

Lorentz force, N/m3

\( \vec{F}_{\text{b}} \) :

Buoyancy force, N/m3

\( \vec{F}_{\text{d}} \) :

Damping force, N/m3

\( f_{\text{l}} \) :

Liquid fraction

\( H \) :

Enthalpy, J/kg

\( h \) :

Sensible enthalpy, J/kg

\( h_{\text{ref}} \) :

Reference enthalpy, J/kg

\( \vec{J} \) :

Current density, A/m2

\( k_{\text{eff}} \) :

Effective thermal conductivity, W/(m K)

\( L \) :

Latent heat, J/kg

\( p \) :

Pressure, Pa

\( Q \) :

Joule heating, W/m3

\( T \) :

Temperature, K

\( T_{\text{ref}} \) :

Reference temperature, K

\( T_{\text{l}} \) :

Liquidus temperature, K

\( T_{\text{s}} \) :

Solidus temperature, K

\( t \) :

Time, s

\( \vec{v} \) :

Velocity, m/s

\( \mu_{0} \) :

Vacuum permittivity of metal, F/m

\( \mu_{\text{eff}} \) :

Effective viscosity (Pa s)

\( \rho \) :

Density, kg/m3

\( \sigma \) :

Electrical conductivity, 1/(Ω m)

\( \phi \) :

Electrical potential, V

References

  1. H.L. Zhang, C.Q. Zhou, B. Wu, and J. Li: JOM, 2013, vol. 65, pp. 1452–58.

    Article  Google Scholar 

  2. G.P. Tarcy, H. Kvande, and A. Tabereaux: JOM, 2011, vol. 63, pp. 101–108.

    Article  Google Scholar 

  3. N.A. Warner: Metall. Mater. Trans. B, 2008, vol. 39, pp. 246–67.

    Article  Google Scholar 

  4. P. Desclaux: Metall. Mater. Trans. B, 2001, vol. 32, pp. 743–44.

    Article  Google Scholar 

  5. J. Zoric, J. Thonstad, and T. Haarberg: Metall. Mater. Trans. B, 1999, vol. 30, pp. 341–48.

    Article  Google Scholar 

  6. C.Y. Cheung, C. Menictas, J. Bao, M. Skyllas-Kazacos, and B.J. Welch: AIChE J., 2013, vol. 59, pp. 1544–56.

    Article  Google Scholar 

  7. M. Dupuis and V. Bojarevics: Light Metals, TMS, Warrendale, PA, 2005, pp. 449-54.

    Google Scholar 

  8. Y. Safa, M. Flueck, and J. Rappaz: Appl. Math. Model, 2009, vol. 33, pp. 1479–92.

    Article  Google Scholar 

  9. M. Taylor, W. Zhang, V. Wills, and S. Schmid: Chem. Eng. Res. Des., 1996, vol. 74, pp. 913–33.

    Article  Google Scholar 

  10. Y.F. Wang, L.F. Zhang, and X.J. Zuo: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1051–64.

    Article  Google Scholar 

  11. M.A. Doheim, A.M. El-kersh, and N.M. Ali: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 113–19.

    Article  Google Scholar 

  12. V. Bojarevics: Light Metals, TMS, Warrendale, PA, 2013, pp. 609–14.

    Google Scholar 

  13. K. Vekony and L. Kiss: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1086–97.

    Article  Google Scholar 

  14. D.S. Severo, V. Gusberti, A.F. Schneider, E.C.V. Pinto, and V. Potocnik: Light Metals, TMS, Warrendale, PA, 2008, pp. 413–18.

    Google Scholar 

  15. R. Kumar and A. Dewan: Int. J. Heat Mass Tran., 2014, vol. 72, pp. 680–89.

    Article  Google Scholar 

  16. W. Bian, P. Vasseur, E. Bilgen, and F. Meng: Int. J. Heat Fluid Flow, 1996, vol. 17, pp. 36–44.

    Article  Google Scholar 

  17. FLUENT Theory Guide, ANSYS FLUENT 14.5 Documentation, Ansys Inc., 2012.

  18. A.T. Brimmo, M.I. Hassan, and Y. Shatilla: Appl. Therm. Eng., 2014, vol. 73, pp. 116–27.

    Article  Google Scholar 

  19. M. Dupuis and I. Tabsh: Light Metals, TMS, Warrendale, PA, 1994, pp. 339-345.

    Google Scholar 

  20. R.D. Pehlke: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2251-2273.

    Article  Google Scholar 

  21. G.M. Poole, M. Heyen, L. Nastac, and N. El-Kaddah: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1834–41.

    Article  Google Scholar 

  22. O. Biro and K. Preis: IEEE Trans. Magn., 1989, vol. 25, pp. 3145–59.

    Article  Google Scholar 

  23. O. Zikanov, A. Thess, P.A. Davidson, and D.P. Ziegler: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1541–50.

    Article  Google Scholar 

  24. Q. Wang, B.K. Li, Z. He, and N.X. Feng: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 272–94.

    Article  Google Scholar 

  25. R.J. Zhao, L. Gosselin, A. Ousegui, M. Fafard, D.P. Ziegler: Numer. Heat Transfer A, 2013, vol. 64, pp. 317–38.

    Article  Google Scholar 

  26. D.S. Severo and V. Gusberti: Light Metals, TMS, Warrendale, PA, 2009, pp. 557–62.

    Google Scholar 

  27. V.A. Khokhlov, E.S. Filatov, A. Solheim, and J. Thonstad: Light Metals, TMS, Warrendale, PA, 1998, pp. 501–06.

    Google Scholar 

  28. H. Abbas, M.P. Taylor, M. Fafard, and J.J.J. Chen: Light Metals, TMS, Warrendale, PA, 2009, pp. 551–56.

    Google Scholar 

  29. M.A. Cooksey, M.P. Taylor, and J.J.J. Chen: JOM, 2008, vol. 60, pp. 51–57.

    Article  Google Scholar 

  30. B. Pekmen and M. Tezer-Sezgin: Int. J. Heat Mass Tran., 2014, vol. 71, pp. 172–82.

    Article  Google Scholar 

  31. M. Alam, W. Yang, K. Mohanarangam, G. Brooks, and Y.S. Morsi: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1155–1165.

    Article  Google Scholar 

  32. Z.S. Kolenda, J. Nowakowski, and P. Oblakowski: Int. J. Heat Mass Tran., 1981, vol. 24, pp. 891–94.

    Article  Google Scholar 

  33. K. Azari, H. Alamdari, G. Aryanpour, D.P. Ziegler, D. Picard, and M. Fafard: Powder Technol., 2013, vol. 246, pp. 650–57.

    Article  Google Scholar 

  34. G. Choudhary: Electrochem. Soc., 1973, vol. 49, pp. 5111–14.

    Google Scholar 

  35. J.P. Peng: Industrial Test Study on Newly Structured Cathode Aluminum Reduction Cell, Ph.D. thesis, Northeastern University, Shenyang. 2009.

  36. Z.Q. Wang: Industrial Experimental Study of Aluminum Reduction Cells Potline with a New Type of Cathode Design, Ph.D. thesis, Northeastern University, Shenyang. 2010.

Download references

Acknowledgments

The authors’ gratitude goes to National Natural Science Foundation of People’s Republic of China (Nos. 51210007, 51434005), and Fundamental Research Funds of People’s Republic of China for the Central Universities (N140206002). Wang’s work is also supported by the Fonds de recherche du Québec - Nature et Technologies by the intermediary of the Aluminium Research Centre – REGAL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baokuan Li.

Additional information

Manuscript submitted May 19, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Gosselin, L., Fafard, M. et al. Numerical Investigation on the Impact of Anode Change on Heat Transfer and Fluid Flow in Aluminum Smelting Cells. Metall Mater Trans B 47, 1228–1236 (2016). https://doi.org/10.1007/s11663-015-0558-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0558-9

Keywords

Navigation