Skip to main content
Log in

Computation of Phase Fractions in Austenite Transformation with the Dilation Curve for Various Cooling Regimens in Continuous Casting

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A concise model is applied to compute the microstructure evolution of austenite transformation by using the dilation curve of continuously cast steels. The model is verified by thermodynamic calculations and microstructure examinations. When applying the model, the phase fractions and the corresponding transforming rates during austenite transformation are investigated at various cooling rates and chemical compositions. In addition, ab initio calculations are performed for paramagnetic body-centered-cubic Fe to understand the thermal expansion behavior of steels at an atomic scale. Results indicate that by increasing the cooling rate, the final volume fraction of ferrite/pearlite will gradually increase/decrease with a greater transforming rate of ferrite. The ferrite fraction increases after austenite transformation with lowering of the carbon content and increasing of the substitutional alloying fractions. In the austenite transformation, the thermal expansion coefficient is sequentially determined by the forming rate of ferrite and pearlite. According to the ab initio theoretical calculations for the single phase of ferrite, thermal expansion emerges from magnetic evolution and lattice vibration, the latter playing the dominant role. The theoretical predictions for volume and thermal expansion coefficient are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.J. Long, Z.H. Dong, J.H. Sheng, D.F. Chen, and C.M. Chen: Steel Res. Int., 2015, vol. 86, pp. 154-62.

    Article  Google Scholar 

  2. B. Mintz: Mater. Sci. Tech.-Lond., 2008, vol. 24, pp. 112-20.

    Article  Google Scholar 

  3. B. Mintz: ISIJ Int., 1999, vol. 39, pp. 833-55.

    Article  Google Scholar 

  4. K.M. Banks, A. Tuling, and B. Mintz: Mater. Sci. Tech.-Lond., 2012, vol. 28, pp. 536-42.

    Article  Google Scholar 

  5. B. Mintz and A. Cowley: Mater. Sci. Tech.-Lond., 2006, vol. 22, pp. 279-92.

    Article  Google Scholar 

  6. M.R. Allazadeh: Ph.D. Dissertation, University of Pittsburgh, Pittsburgh, PA, 2009.

  7. M.R. Allazadeh and C.I. Garcia: Iron. Steel., 2011, vol. 38, pp. 566-76.

    Article  Google Scholar 

  8. M.R. Allazadeh: Steel Grips, 2010, vol. 8, pp. 285-9.

    Google Scholar 

  9. D.J. Mun, E.J. Shin, Y.W. Choi, J.S. Lee, and Y.M. Koo: Mat. Sci. Eng. a-Struct., 2012, vol. 545, pp. 214-24.

    Article  Google Scholar 

  10. A. Yamanaka, T. Takaki, and Y. Tomita: ISIJ Int., 2012, vol. 52, pp. 659-68.

    Article  Google Scholar 

  11. D.J. Wang, Y.C. Liu, and Y.H. Zhang: J. Mater. Sci., 2008, vol. 43, pp. 4876-85.

    Article  Google Scholar 

  12. S.J. Jones and H.K.D.H. Bhadeshia: Acta Mater., 1997, vol. 45, pp. 2911-20.

    Article  Google Scholar 

  13. F.G. Caballero, C. Capdevila, and C.G. de Andres: Mater. Sci. Tech.-Lond., 2002, vol. 18, pp. 534-40.

    Article  Google Scholar 

  14. M. Umemoto, A. Hiramatsu, A. Moriya, T. Watanabe, S. Nanba, N. Nakajima, G. Anan, and Y. Higo: ISIJ Int., 1992, vol. 32, pp. 306-15.

    Article  Google Scholar 

  15. T.T. Pham, E.B. Hawbolt, and J.K. Brimacombe: Metall. Mater. Trans. A, 1995, vol. 26, pp. 1993-2000.

    Article  Google Scholar 

  16. P.A. Manohar and T. Chandra: ISIJ Int., 1998, vol. 38, pp. 766-74.

    Article  Google Scholar 

  17. M.C. Zhao, K. Yang, F.R. Xiao, and Y.Y. Shan: Mat. Sci. Eng. a-Struct., 2003, vol. 355, pp. 126-36.

    Article  Google Scholar 

  18. C.G. de Andres, F.G. Caballero, C. Capdevila, and L.F. Alvarez: Mater. Charact., 2002, vol. 48, pp. 101-11.

    Article  Google Scholar 

  19. X. Yuan, Z. Liu, S. Jiao, X. Liu, and G. Wang: ISIJ Int., 2007, vol. 47, pp. 1658-65.

    Article  Google Scholar 

  20. C.X. Liu, Y.C. Liu, D.T. Zhang, and Z.S. Yan: Appl. Phys. a-Mater., 2011, vol. 105, pp. 949-57.

    Article  Google Scholar 

  21. R. Petrov, L. Kestens, and Y. Houbaert: Mater. Charact., 2004, vol. 53, pp. 51-61.

    Article  Google Scholar 

  22. C.S. Oh, H.N. Han, C.G. Lee, T.H. Lee, and S.J. Kim: Met. Mater. Int., 2004, vol. 10, pp. 399-406.

    Article  Google Scholar 

  23. M.J. Long, D.F. Chen, L.F. Zhang, Y. Zhao, and Q. Liu: Metal. Int., 2011, vol. 16, pp. 19-33.

    Google Scholar 

  24. J.A. Zhang, D.F. Chen, S.G. Wang, and M.J. Long: Steel Res. Int., 2011, vol. 82, pp. 213-21.

    Article  Google Scholar 

  25. L. Vitos: Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications, Springer, London, U.K., 2007.

    Google Scholar 

  26. L. Vitos, H.L. Skriver, B. Johansson, and J. Kollár: Comp. Mater. Sci., 2000, vol. 18, pp. 24-38.

    Article  Google Scholar 

  27. J. Kollar, L. Vitos, and H.L. Skriver: Electronic Structure and Physical Properties of Solids: The Uses of the LMTO Method, H. Dreysse, ed., Springer, Berlin, 2000, p. 85.

  28. L. Vitos, I.A. Abrikosov, and B. Johansson: Phys. Rev. Lett., 2001, vol. 87, p. 156401.

    Article  Google Scholar 

  29. P. Soven: Phys. Rev., 1967, vol. 156, pp. 809-13.

    Article  Google Scholar 

  30. J. Staunton, B.L. Gyorffy, A.J. Pindor, G.M. Stocks, and H. Winter: J. Magn. Magn. Mater., 1984, vol. 45, pp. 15-22.

    Article  Google Scholar 

  31. W. Kohn and L.J. Sham: Phys. Rev., 1965, vol. 140, pp. 1133-8.

    Article  Google Scholar 

  32. H. Levämäki, M.P.J. Punkkinen, K. Kokko, and L. Vitos: Phys. Rev. B, 2014, vol. 89, p. 115107.

    Article  Google Scholar 

  33. H. Levämäki, M.P.J. Punkkinen, K. Kokko, and L. Vitos: Phys. Rev. B, 2012, vol. 86, p. 201104.

    Article  Google Scholar 

  34. K. Kádas, L. Vitos, B. Johansson, and J. Kollár: Phys. Rev. B, 2007, vol. 75, p. 035132.

    Article  Google Scholar 

  35. V.L. Moruzzi, J.F. Janak, and K. Schwarz: Phys. Rev. B, 1988, vol. 37, pp. 790-9.

    Article  Google Scholar 

  36. H.L. Zhang, N. Al-Zoubi, B. Johansson, and L. Vitos: J. Appl. Phys., 2011, vol. 110, p. 073707.

    Article  Google Scholar 

  37. C.G. de Andres, F.G. Caballero, and C. Capdevila: Scripta Mater., 1998, vol. 38, pp. 1835-42.

    Article  Google Scholar 

  38. M.I. Onsoien, M.M. Hamdi, and A. Mo: Weld J., 2009, vol. 88, pp. 1S-6S.

    Google Scholar 

  39. F.G. Caballero, C. Capdevila, and C.G. De Andres: ISIJ Int., 2001, vol. 41, pp. 1093-102.

    Article  Google Scholar 

  40. F.G. Caballero, C. Capdevila, and C.G. De Andres: J. Mater. Sci., 2002, vol. 37, pp. 3533-40.

    Article  Google Scholar 

  41. M. Acet, H. Zahres, E.F. Wassermann, and W. Pepperhoff: Phys. Rev. B, 1994, vol. 49, pp. 6012-7.

    Article  Google Scholar 

  42. Z.S. Basinski, W. Hume-Rothery, and A.L. Sutton: Proc. Roy. Soc. A, 1955, vol. 229, pp. 459-67.

    Article  Google Scholar 

  43. W. Xiong: Ph.D. dissertation, KTH Royal Institute of Technology, Stockholm, Sweden, 2012.

Download references

Acknowledgments

The work was financially supported by the Natural Science Foundation of China (NSFC, Project No. 51374260) and the Natural Science Foundation of Chongqing (Project No. cstc2013jcyjA50005). Part of the work was supported by the Swedish Research Council, the Swedish Foundation for Strategic Research, the Chinese Scholarship Council, and the Hungarian Scientific Research Fund (OTKA 84078 and 109570).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengfu Chen.

Additional information

Manuscript submitted June 26, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Chen, D., Long, M. et al. Computation of Phase Fractions in Austenite Transformation with the Dilation Curve for Various Cooling Regimens in Continuous Casting. Metall Mater Trans B 47, 1553–1564 (2016). https://doi.org/10.1007/s11663-015-0545-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0545-1

Keywords

Navigation