Skip to main content
Log in

Study on the Inter-electrode Process of Aluminum Electrolysis

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The voltage distribution between carbon anode and aluminum cathode in cryolite electrolyte saturated with alumina was determined using a scanning reference electrode to investigate the inter-electrode process during aluminum electrolysis. The results showed that the anode–cathode-distance (ACD) is consisted of three parts: a relatively stable cathode boundary layer, bubble-free electrolyte layer, and gas–liquid layer near the anode. The aluminum diffusion layer with high electronic conductivity as well as the crystallization of cryolite was observed at the cathode boundary layer. The thickness of the aluminum diffusion layer varied with current density, which further determined the critical ACD. The thickness, coverage, and releasing frequency of the bubbles on both laboratory and industrial prebaked cells were derived, and it is found that the average bubble coverage decreases with current density, and the average coverage at 0.8 A cm−2 is approximately 50 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Solheim: Light Metals, TMS, San Diego, 2014, pp. 753-758.

    Google Scholar 

  2. Z. Qiu, L. Fan, K. Grjotheim and H. Kvande: J. App. Electrochem., 1987, vol. 17(4), p. 707-714.

    Article  Google Scholar 

  3. W. E. Haupin and W. C. McGrew: Essential Readings in Light Metals: Aluminum Reduction Technology, 1975, vol. 2, pp. 234-239.

    Google Scholar 

  4. G. M. Haarberg, J. Thonstad, S. Pietrzyk and J. J. Egan: Light Metals, TMS, Seattle, 2002, pp. 1083-1083.

    Google Scholar 

  5. V. Potocnik and F. Laroche: Light Metals, TMS, New Orleans, 2001, pp. 419-425.

    Google Scholar 

  6. E. Olsen, S.Rolseth and B. P. Moxnes: Light Metals, TMS, San Diego, 1999, pp. 27-39.

    Google Scholar 

  7. S. Rolseth, T. Muftuoglu, A. Solheim and J. Thonstad: Light Metal, TMS, Warrendale, 1986, vol. 2, pp. 517-523.

    Google Scholar 

  8. A. Solheim: Light Metals, TMS, Seattle, 2002, pp. 225-230.

    Google Scholar 

  9. H. Kvande and W. Haupin: JOM, 2000, vol. 52(2), pp. 31-37.

    Article  Google Scholar 

  10. H. Kvande and W. Haupin: JOM, 2001, vol. 53(5), pp. 29-33.

    Article  Google Scholar 

  11. W. E. Haupin: J. Met. 1971, vol. 23(10), pp. 46-49.

    Google Scholar 

  12. N. Richards, H. Gudbrandsen, S. Rolseth and J. Thonstad: Light Metals, TMS, Warrendale, 2003, pp. 315-322.

    Google Scholar 

  13. N. Richards: Light Metals, TMS, Warrcndale, 1998, pp. 521-529.

    Google Scholar 

  14. J. Tie, Z. Qiu, and G. Lu: Nonferrous Met., 1994, vol. 46(2), pp. 49-51.

    Google Scholar 

  15. P. Fellner, K. Grjotheim and H. Kvande: JOM, 1985, vol. 37(11), pp. 29-32.

    Article  Google Scholar 

  16. M. Chrenkova, V. Danek and A. Silny: Light Metals, TMS, Warrendale, 1996, pp. 227-232.

    Google Scholar 

  17. G. M. Haarberg, J. Thonstad, J. J. Egan, R. Oblakowski and S. Pietrzyk: Light Metals, TMS, Warrendale, 1996, pp. 221-225.

    Google Scholar 

  18. G. M. Haarberg, K. S. Osen, J. Thonstad, R. J. Heus and J. J. Egan:. Metall. Trans. B, 1993. vol. 24(5), pp. 729-735.

    Article  Google Scholar 

  19. M. A. Doheim, A. M. El-kersh and M. M. Ali: Metall. Mater. Trans. B, 2007, vol. 38(1), pp. 113-119.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude for the financial support provided by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAE08B01), the National Natural Science Foundation of China (Grant Nos. 51322406, 51434005, 51474060, 51574070, 51529401), and the NEU foundation (No. N130402011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingliang Gao.

Additional information

Manuscript submitted on November 22, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Gao, B., Wang, Z. et al. Study on the Inter-electrode Process of Aluminum Electrolysis. Metall Mater Trans B 47, 621–629 (2016). https://doi.org/10.1007/s11663-015-0508-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0508-6

Keywords

Navigation