Skip to main content
Log in

A Novel Technology to Develop a Nickel-Enriched Layer on Slab Surface by Utilizing NiO-Containing Synthetic Powder

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Cu, as one of the typical tramp elements, is known to cause hot shortness during reheating of slabs followed by hot rolling of sheet products. In order to prevent such harmful aspects, a new idea is proposed by using synthetic powders containing NiO in the mold flux during continuous casting of the slab. During the casting, NiO is reduced and absorbed on initial solidified steel shell, and a Ni-rich layer is developed near the surface region of the slab. According to the proposed idea, it is expected that both the Cu solubility and the melting temperature of Cu-segregated region would increase considerably by virtue of Ni-rich layer, which is believed to play an important role to prevent the Cu hot shortness. A series of laboratory-scale experiments were carried out in order to confirm the reduction and the absorption of Ni into the steel matrix. It was observed by SEM–EDS and FE-EPMA that a Ni-enriched layer, as thick as a few hundred μm, formed near the surface of the slab. Also, a number of laboratory-scale heat treatment tests under oxidizing atmosphere showed that the samples with the Ni-enriched layer had a decreased Cu enrichment at the interface between scale and steel, compared to a case without Ni-rich layer. A pilot-plant-scale steel slab (medium carbon steel containing 0.3 wt pct Cu) was obtained in a continuous casting process with the NiO-containing mold flux, and a Ni-enriched layer was also observed. It was concluded that the use of NiO in the mold flux is a promising new approach for suppressing the hot shortness of Cu-containing steel, without an expensive addition of Ni to the whole steel matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 1. C. Ryman and M. Larsson: ISIJ int., 2006, vol. 46, pp. 1752-1758.

    Article  Google Scholar 

  2. D. Young: High Temperature Oxidation and Corrosion of Metals, Elsevier, 2008, pp. 185–193.

  3. 3. T. Kajitani, M. Wakoh, S. Ogibayashi and S. Mizoguchi: Tetsu-to-Hagané, 1995, vol. 81, pp. 185-190.

    Google Scholar 

  4. 4. H. G. Katayama, T. Momono, M. Doe and H. Saitoh: ISIJ Int., 1994, vol. 34, pp. 171-176.

    Article  Google Scholar 

  5. 5. A. Hartman, C. Williamson and D. Davis: Iron Steelmaker, 1996, vol. 23, pp. 43-45.

    Google Scholar 

  6. 6. K. Matsumaru, M. Susa and K. Nagata: Tetsu-to-Hagané, 1996, vol. 82, pp. 799-804.

    Google Scholar 

  7. 7. M. Sasabe, E. Harada and S Yamashita: Tetsu-to-Hagané, 1996, vol. 82, pp. 129-134.

    Google Scholar 

  8. R.E. Brown, H.V. Divilio, R.J. Divilio (1975) Removal of Copper, Tin and other Impurities from Iron Scrap. BuMines, RI, pp. 1-31

    Google Scholar 

  9. 9. C. Wang, T. Nagasaka and M. Hino: ISIJ Int.,1991, vol. 31, pp. 1300-1308.

    Article  Google Scholar 

  10. 10. C. Wang, T. Nagasaka and M. Hino: ISIJ Int., 1991, vol. 31, pp. 1309-1315.

    Article  Google Scholar 

  11. 11. X. Chen, N. Ito and K. Nakashima: Tetsu-to-Hagané, 1995, vol.81, pp. 959-964.

    Google Scholar 

  12. 12. R. Morales D. and N. Sano: Ironmaking and Steelmaking, 1982, vol. 9, pp. 65-76.

    Google Scholar 

  13. 13. T. Hidani, K. Takemura and R. O. Suzuki: Tetsu-to-Hagané, 1996, vol. 82, pp. 135-140.

    Google Scholar 

  14. 14. T. Maruyama, H. G. Katayama and T. Momono: Tetsu-to-Hagané, 1998, vol. 84 pp. 243-248.

    Google Scholar 

  15. 15. H. Ono-Nakazato, K. Taguchi, Y. Seike and T. Usui: ISIJ Int., 2003, vol. 43, pp. 1691-1697.

    Article  Google Scholar 

  16. 16. N. Imai, N. Komatsubara and K. Kunishige: ISIJ Int., 1997, vol. 37, pp. 224-231.

    Article  Google Scholar 

  17. 17. M. Hatano and K. Kunishige: Tetsu-to-Hagané, 2003, vol. 89, pp. 42-49.

    Google Scholar 

  18. 18. B. Webler, L. Yin, S. Sridhar: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 725-737.

    Article  Google Scholar 

  19. 19. L. Yin, S. Balaji and S. Sridhar: Metall. Mater. Trans. B, 2010 vol. 41, pp. 598-611.

    Article  Google Scholar 

  20. 20. A. Takemura, K. Kunishige, S. Okaguchi and K. Fujiwara: Tetsu-to-Hagané, 2009, vol.95, pp. 369-377.

    Article  Google Scholar 

  21. 21. S.-W Kim and H.-G. Lee: Steel Research Int., 2009, vol. 80, pp. 121-129.

    Google Scholar 

  22. 22. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melancon, A.D. Pelton, C. Robelin, and S. Petersen: Calphad, 2009, vol. 33, pp. 295-311.

    Article  Google Scholar 

  23. E. A. Brandes, G. B. Brook: Smithells Metals Reference Book. The Bath Press, London 1992, pp. 13.

    Google Scholar 

  24. 24. C. W. Tuck, M. Odgers, and K. Sachs: Corros. Sci., 1969, vol. 9, pp. 271-285.

    Article  Google Scholar 

  25. K. Honda: Oxid. Met. 1992, vol. 38, pp. 347-363.

    Article  Google Scholar 

  26. 26. N. Birks: Electrochemical Society, Proc. Symp., 1976, vol. 1, pp. 215-260.

    Google Scholar 

  27. P. Kofstad: High Temperature Corrosion, Elsevier, London, 1988, pp. 120-125.

    Google Scholar 

  28. 28. Y. Kondo: ISIJ Int., 2007, vol. 47, pp. 1309-1314.

    Article  Google Scholar 

  29. 29. R. Y. Chen and W. Y. D. Yuen: Oxidation of Metals, 2003, vol. 59, pp. 433-468.

    Article  Google Scholar 

  30. 30. H. Ohtani, H. Suda and K. Ishida: ISIJ Int., 1997, vol. 37, pp. 207-216.

    Article  Google Scholar 

  31. 31. H. T. Abuluwefa, and R. I. L Guthrie and F. Ajersch: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1633-1642.

    Article  Google Scholar 

  32. H. T. Abuluwefa, and R. I. L Guthrie and F. Ajersch: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1643-1651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Bae Kang.

Additional information

Manuscript submitted May 4, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, TI., Cho, JW. & Kang, YB. A Novel Technology to Develop a Nickel-Enriched Layer on Slab Surface by Utilizing NiO-Containing Synthetic Powder. Metall Mater Trans B 47, 779–787 (2016). https://doi.org/10.1007/s11663-015-0459-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0459-y

Keywords

Navigation