Investigation and Analytical Description of Acoustic Production by Magneto-Acoustic Mixing Technology


Magneto-Acoustic Mixing Technology is a novel manufacturing method that combines two magnetic fields to produce high-intensity sonication for liquid-state materials processing. This method may be adapted to the manufacture of various materials that benefit from a combination of high temperature, magnetic fields, and acoustic energy. In this work, acoustic generation mechanisms are described in detail and found to be dependent on the skin depth of the induction currents. Analytical models of acoustic pressure are derived, based on two mutually exclusive vibration mechanisms, crucible and melt vibration. Additionally, grain size evidence of acoustic pressure distribution is presented as preliminary model validation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    W. J. Joost, JOM 2012, vol. 64, p.1032–38.

    Google Scholar 

  2. 2.

    N. Hari Babu, Z. Fan, and D.G. Eskin: in TMS2013 Annual Meeting Supplemental Proceedings, San Antonio, TX, 2013, pp. 1037–44.

  3. 3.

    H. Emmerich, H. Lowen, R. Wittkowski, T. Gruhn, G. I. Toth, G. Tegze and L. Granasy, Advances in Physics 2012, vol. 61, pp. 665–743.

    Article  Google Scholar 

  4. 4.

    W. H. Sillekens, D. J. Jarvis, A. Vorozhtsov, V. Bojarevics, C. F. Badini, M. Pavese, S. Terzi, L. Salvo, L. Katsarou, and H. Dieringa, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2014, vol. 45A, pp. 3349–61.

    Article  Google Scholar 

  5. 5.

    P. Gillon, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2000, vol. 287, p.146–52.

    Article  Google Scholar 

  6. 6.

    S. Asai, Model. Simul. Mater. Sci. Eng. 2004, vol. 12, pp. R1–12.

    Article  Google Scholar 

  7. 7.

    M. J. Li, T. Tamura and K. Miwa, Metall. Mater. Trans. A 2009, vol. 40A, pp. 1422–35.

    Article  Google Scholar 

  8. 8.

    T. Sugiyama, M. Tahashi, K. Sassa and S. Asai, ISIJ Int. 2003, vol. 43, pp. 855–61.

    Article  Google Scholar 

  9. 9.

    S. Yang, W. J. Liu and J. Jia, J. Mater. Sci. 2001, vol. 36, pp. 5351–55.

    Article  Google Scholar 

  10. 10.

    Q. Wang, D. G. Li, K. Wang, Z. Y. Wang and J. C. He, Scripta Mater. 2007, vol. 56, p.485–8.

    Article  Google Scholar 

  11. 11.

    X. Li, Z. M. Ren and Y. Fautrelle, J. Cryst. Growth 2006, vol. 290, pp. 571–5.

    Article  Google Scholar 

  12. 12.

    K. S. Suslick and G. J. Price, Annu. Rev. Mater. Sci. 1999, vol. 29, p.295-326.

    Article  Google Scholar 

  13. 13.

    A. Gedanken, Ultrason. Sonochem. 2004, vol. 11, pp. 47–55.

    Article  Google Scholar 

  14. 14.

    M. De Cicco, H. Konishi, G. P. Cao, H. S. Choi, L. S. Turng, J. H. Perepezko, S. Kou, R. Lakes and X. C. Li, Metall. Mater. Trans. A 2009, vol. 40A, pp. 3038–45.

    Article  Google Scholar 

  15. 15.

    K. B. Nie, X. J. Wang, K. Wu, L. Xu, M. Y. Zheng and X. S. Hu, J. Alloy. Compd. 2011, vol. 509, pp. 8664–69.

    Article  Google Scholar 

  16. 16.

    Y. Yang and X. C. Li, J. Manuf. Sci. Eng.-Trans. ASME 2007, vol. 129, pp. 252–5.

    Article  Google Scholar 

  17. 17.

    M. Qian, A. Ramirez, and A. Das, J. Cryst. Growth 2009, vol. 311, pp. 3708–15.

    Article  Google Scholar 

  18. 18.

    M. Li, T. Tamura and K. Miwa, Acta Mater. 2007, vol. 55, pp. 4635–43.

    Article  Google Scholar 

  19. 19.

    R. Jaramillo, R. Kisner, Ge. Ludtka, Ga. Ludtka, and J. Wilgen: USA Patent 7534980, 2009.

  20. 20.

    H. B. Henderson, O. Rios, Z. L. Bryan, C. P. Heitman, G. M Ludtka, G. Mackiewicz-Ludka, A. M. Melin and M. V. Manuel, Adv. Eng. Mater. 2014, vol. 16, pp. 1076–82.

    Article  Google Scholar 

  21. 21.

    J. S. Park, S. Taniguchi and Y. J. Park, J. Phys. D-Appl. Phys. 2009, vol. 42, p. 6.

    Google Scholar 

  22. 22.

    P.M. Shearer: Introduction to Seismology, 2nd ed., Cambridge University Press, Cambridge, 2009.

    Google Scholar 

  23. 23.

    Q. L. Wang, L. G. Yan, B. Z. Zhao, S. S. Song and Y. Z. Lei, IEEE T. Appl. Supercon. 2004, vol. 14, pp. 372–5.

    Google Scholar 

  24. 24.

    C. Vivés, Metall. Mater. Trans. B 1996, vol. 27B, pp. 457–64.

    Article  Google Scholar 

  25. 25.

    C. Vivés, Metall. Mater. Trans. B 1996, vol. 27B, pp. 445–55.

    Article  Google Scholar 

  26. 26.

    M. J. Li, T. Tamura, N. Omura and K. Miwa, J. Alloy. Compd. 2010, vol. 494, p.116-22.

    Article  Google Scholar 

  27. 27.

    L. Cartz: Nondestructive Testing: Radiography, Ultrasonics, Liquid Penetrant, Magnetic Particle, Eddy Current, ASM International, 1995.

  28. 28.

    M.V. Brook: Ultrasonic Inspection Technology Development and Search Unit Design: Examples of Practical Applications. (Wiley-IEEE Press, New York, 2011.

    Google Scholar 

  29. 29.

    G.I. Eskin: Ultrasonic Treatment of Light Alloy Melts, Gordon and Breach Science Publishers, Amsterdam, 1998.

    Google Scholar 

  30. 30.

    L. Nastac, Metall. Mater. Trans. B 2011, vol. 42B, pp. 1297–305.

    Article  Google Scholar 

  31. 31.

    M. S. Plesset and A. Prosperetti, Annu. Rev. Fluid Mech. 1977, vol. 9, p.145-85.

    Article  Google Scholar 

  32. 32.

    G. I. Eskin, Adv. Perform. Mater. 1997, vol. 4, pp. 223–32.

    Article  Google Scholar 

  33. 33.

    H. G. Flynn, J. Acoust. Soc. Am. 1975, vol. 58, pp. 1160–70.

    Article  Google Scholar 

  34. 34.

    G. I. Eskin, Ultrason. Sonochem. 1995, vol. 2, pp. S137–41.

    Article  Google Scholar 

  35. 35.

    T. B. Benjamin and A. T. Ellis, Philosophical Transactions of the Royal Society of London Series a-Mathematical and Physical Sciences 1966, vol. 260, pp. 221–40.

    Article  Google Scholar 

  36. 36.

    J.C.R. Hunt and Sherclif J.A., Annu. Rev. Fluid Mech. 1971, vol. 3, p.37-62.

    Article  Google Scholar 

  37. 37.

    K.R. Cramer and S.-I. Pai: Magnetofluid Dynamics for Engineers and Applied Physicists, Scripta Publishing Company, 1973.

    Google Scholar 

  38. 38.

    P.A. Davidson: An Introduction to Magnetohydrodynamics, Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  39. 39.

    D. H. Matthiesen, M. J. Wargo, S. Motakef, D. J. Carlson, J. S. Nakos and A. F. Witt, J. Cryst. Growth 1987, vol. 85, p.557-560.

    Article  Google Scholar 

  40. 40.

    T. Emi and H. Shibata: in Solidification and Casting, B. O’Reilly, K. Cantor, eds., Institute of Physics Publishing: London, 2003, pp. 286–88.

    Google Scholar 

  41. 41.

    H. Esaka, T. Wakabayashi, K. Shinozuka and M. Tamura, ISIJ Int. 2003, vol. 43, p.1415-1420.

    Article  Google Scholar 

  42. 42.

    B.Q. Li, JOM 1998, vol. 50, p.1-13.

    Google Scholar 

  43. 43.

    D. Samanta and N. Zabaras, Int. J. Heat Mass Transf. 2006, vol. 49, p.4850-4866.

    Article  Google Scholar 

  44. 44.

    H.W. Deng, Y.J. Zhao, C.J. Liang, W.S. Jiang and Y.M. Ning, Prog. Electromagn. Res. M 2009, vol. 9, p.1-8.

    Article  Google Scholar 

  45. 45.

    P.G. Simpson: Induction Heating: Coil and System Design, McGraw-Hill, New York, 1960.

    Google Scholar 

  46. 46.

    A. Gupta: Risk Management and Simulation, CRC Press, Boca Raton, FL, 2013.

    Google Scholar 

  47. 47.

    Y. Mizutani, J. Kawata, K. Miwa, K. Yasue, T. Tamura and Y. Sakaguchi, J. Mater. Res. 2004, vol. 19, p.2997-3003.

    Article  Google Scholar 

  48. 48.

    M. J. Li, T. Tamura, N. Omura and K. Miwa, J. Alloy. Compd. 2009, vol. 487, p.187-193.

    Article  Google Scholar 

  49. 49.

    M. J. Li, T. Tamura and K. Miwa, J. Mater. Res. 2009, vol. 24, p.145-155.

    Article  Google Scholar 

  50. 50.

    G. I. Eskin, Ultrason. Sonochem. 2001, vol. 8, p.319-325.

    Article  Google Scholar 

  51. 51.

    D.J. Griffiths: Introduction to Electrodynamics, Prentice-Hall, USA, 1999.

    Google Scholar 

  52. 52.

    W. Young and R. Budynas: Roark’s Formulas for Stress and Strain, 7th ed., McGraw-Hill, New York, 2001.

    Google Scholar 

  53. 53.

    F.E. Tse, I.E. Morse, and R.T. Hinke: Mechanical Vibrations: Theory and Applications, Allyn & Bacon, Boston, NY, 1978.

    Google Scholar 

  54. 54.

    H. T. Zhang, H. Nagaumi, Y. B. Zuo and J. Z. Cui, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2007, vol. 448, p.189-203.

    Article  Google Scholar 

  55. 55.

    K. McManus, A. Williams, M. Cross, N. Croft and C. Walshaw, Int. J. High Perform. C. 2005, vol. 19, p.1-27.

    Article  Google Scholar 

  56. 56.

    C. Bailey, P. Chow, M. Cross, Y. Fryer and K. Pericleous, P. Roy. Soc. A-Math. Phy. 1996, vol. 452, p.459-486.

    Article  Google Scholar 

Download references


The authors would like to thank Dr. Zachary L Bryan for his experimental support and Professors Curtis Taylor and Simon Phillpot for their thoughtful comments. The authors acknowledge support by the Advanced Manufacturing Office (AMO) in the Office of Energy Efficiency and Renewable Energy (EERE), as part of the Department of Energy (DOE). Facilities were provided by the Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL). This material is based upon work supported by the National Science Foundation under grant numbers DMR-0845868. The research sponsored was in part by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

Author information



Corresponding author

Correspondence to Michele V. Manuel.

Additional information

Manuscript submitted May 4, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henderson, H.B., Rios, O., Ludtka, G.M. et al. Investigation and Analytical Description of Acoustic Production by Magneto-Acoustic Mixing Technology. Metall Mater Trans B 46, 2020–2027 (2015).

Download citation


  • Cavitation
  • Acoustic Wave
  • Lorentz Force
  • High Magnetic Field
  • Eddy Current