Metallurgical and Materials Transactions B

, Volume 46, Issue 5, pp 2020–2027 | Cite as

Investigation and Analytical Description of Acoustic Production by Magneto-Acoustic Mixing Technology

  • Hunter B. Henderson
  • Orlando Rios
  • Gerard M. Ludtka
  • Michele V. Manuel


Magneto-Acoustic Mixing Technology is a novel manufacturing method that combines two magnetic fields to produce high-intensity sonication for liquid-state materials processing. This method may be adapted to the manufacture of various materials that benefit from a combination of high temperature, magnetic fields, and acoustic energy. In this work, acoustic generation mechanisms are described in detail and found to be dependent on the skin depth of the induction currents. Analytical models of acoustic pressure are derived, based on two mutually exclusive vibration mechanisms, crucible and melt vibration. Additionally, grain size evidence of acoustic pressure distribution is presented as preliminary model validation.


Cavitation Acoustic Wave Lorentz Force High Magnetic Field Eddy Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Dr. Zachary L Bryan for his experimental support and Professors Curtis Taylor and Simon Phillpot for their thoughtful comments. The authors acknowledge support by the Advanced Manufacturing Office (AMO) in the Office of Energy Efficiency and Renewable Energy (EERE), as part of the Department of Energy (DOE). Facilities were provided by the Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL). This material is based upon work supported by the National Science Foundation under grant numbers DMR-0845868. The research sponsored was in part by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.


  1. 1.
    W. J. Joost, JOM 2012, vol. 64, p.1032–38.Google Scholar
  2. 2.
    N. Hari Babu, Z. Fan, and D.G. Eskin: in TMS2013 Annual Meeting Supplemental Proceedings, San Antonio, TX, 2013, pp. 1037–44.Google Scholar
  3. 3.
    H. Emmerich, H. Lowen, R. Wittkowski, T. Gruhn, G. I. Toth, G. Tegze and L. Granasy, Advances in Physics 2012, vol. 61, pp. 665–743.CrossRefGoogle Scholar
  4. 4.
    W. H. Sillekens, D. J. Jarvis, A. Vorozhtsov, V. Bojarevics, C. F. Badini, M. Pavese, S. Terzi, L. Salvo, L. Katsarou, and H. Dieringa, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2014, vol. 45A, pp. 3349–61.CrossRefGoogle Scholar
  5. 5.
    P. Gillon, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2000, vol. 287, p.146–52.CrossRefGoogle Scholar
  6. 6.
    S. Asai, Model. Simul. Mater. Sci. Eng. 2004, vol. 12, pp. R1–12.CrossRefGoogle Scholar
  7. 7.
    M. J. Li, T. Tamura and K. Miwa, Metall. Mater. Trans. A 2009, vol. 40A, pp. 1422–35.CrossRefGoogle Scholar
  8. 8.
    T. Sugiyama, M. Tahashi, K. Sassa and S. Asai, ISIJ Int. 2003, vol. 43, pp. 855–61.CrossRefGoogle Scholar
  9. 9.
    S. Yang, W. J. Liu and J. Jia, J. Mater. Sci. 2001, vol. 36, pp. 5351–55.CrossRefGoogle Scholar
  10. 10.
    Q. Wang, D. G. Li, K. Wang, Z. Y. Wang and J. C. He, Scripta Mater. 2007, vol. 56, p.485–8.CrossRefGoogle Scholar
  11. 11.
    X. Li, Z. M. Ren and Y. Fautrelle, J. Cryst. Growth 2006, vol. 290, pp. 571–5.CrossRefGoogle Scholar
  12. 12.
    K. S. Suslick and G. J. Price, Annu. Rev. Mater. Sci. 1999, vol. 29, p.295-326.CrossRefGoogle Scholar
  13. 13.
    A. Gedanken, Ultrason. Sonochem. 2004, vol. 11, pp. 47–55.CrossRefGoogle Scholar
  14. 14.
    M. De Cicco, H. Konishi, G. P. Cao, H. S. Choi, L. S. Turng, J. H. Perepezko, S. Kou, R. Lakes and X. C. Li, Metall. Mater. Trans. A 2009, vol. 40A, pp. 3038–45.CrossRefGoogle Scholar
  15. 15.
    K. B. Nie, X. J. Wang, K. Wu, L. Xu, M. Y. Zheng and X. S. Hu, J. Alloy. Compd. 2011, vol. 509, pp. 8664–69.CrossRefGoogle Scholar
  16. 16.
    Y. Yang and X. C. Li, J. Manuf. Sci. Eng.-Trans. ASME 2007, vol. 129, pp. 252–5.CrossRefGoogle Scholar
  17. 17.
    M. Qian, A. Ramirez, and A. Das, J. Cryst. Growth 2009, vol. 311, pp. 3708–15.CrossRefGoogle Scholar
  18. 18.
    M. Li, T. Tamura and K. Miwa, Acta Mater. 2007, vol. 55, pp. 4635–43.CrossRefGoogle Scholar
  19. 19.
    R. Jaramillo, R. Kisner, Ge. Ludtka, Ga. Ludtka, and J. Wilgen: USA Patent 7534980, 2009.Google Scholar
  20. 20.
    H. B. Henderson, O. Rios, Z. L. Bryan, C. P. Heitman, G. M Ludtka, G. Mackiewicz-Ludka, A. M. Melin and M. V. Manuel, Adv. Eng. Mater. 2014, vol. 16, pp. 1076–82.CrossRefGoogle Scholar
  21. 21.
    J. S. Park, S. Taniguchi and Y. J. Park, J. Phys. D-Appl. Phys. 2009, vol. 42, p. 6.Google Scholar
  22. 22.
    P.M. Shearer: Introduction to Seismology, 2nd ed., Cambridge University Press, Cambridge, 2009.CrossRefGoogle Scholar
  23. 23.
    Q. L. Wang, L. G. Yan, B. Z. Zhao, S. S. Song and Y. Z. Lei, IEEE T. Appl. Supercon. 2004, vol. 14, pp. 372–5.Google Scholar
  24. 24.
    C. Vivés, Metall. Mater. Trans. B 1996, vol. 27B, pp. 457–64.CrossRefGoogle Scholar
  25. 25.
    C. Vivés, Metall. Mater. Trans. B 1996, vol. 27B, pp. 445–55.CrossRefGoogle Scholar
  26. 26.
    M. J. Li, T. Tamura, N. Omura and K. Miwa, J. Alloy. Compd. 2010, vol. 494, p.116-22.CrossRefGoogle Scholar
  27. 27.
    L. Cartz: Nondestructive Testing: Radiography, Ultrasonics, Liquid Penetrant, Magnetic Particle, Eddy Current, ASM International, 1995.Google Scholar
  28. 28.
    M.V. Brook: Ultrasonic Inspection Technology Development and Search Unit Design: Examples of Practical Applications. (Wiley-IEEE Press, New York, 2011.CrossRefGoogle Scholar
  29. 29.
    G.I. Eskin: Ultrasonic Treatment of Light Alloy Melts, Gordon and Breach Science Publishers, Amsterdam, 1998.Google Scholar
  30. 30.
    L. Nastac, Metall. Mater. Trans. B 2011, vol. 42B, pp. 1297–305.CrossRefGoogle Scholar
  31. 31.
    M. S. Plesset and A. Prosperetti, Annu. Rev. Fluid Mech. 1977, vol. 9, p.145-85.CrossRefGoogle Scholar
  32. 32.
    G. I. Eskin, Adv. Perform. Mater. 1997, vol. 4, pp. 223–32.CrossRefGoogle Scholar
  33. 33.
    H. G. Flynn, J. Acoust. Soc. Am. 1975, vol. 58, pp. 1160–70.CrossRefGoogle Scholar
  34. 34.
    G. I. Eskin, Ultrason. Sonochem. 1995, vol. 2, pp. S137–41.CrossRefGoogle Scholar
  35. 35.
    T. B. Benjamin and A. T. Ellis, Philosophical Transactions of the Royal Society of London Series a-Mathematical and Physical Sciences 1966, vol. 260, pp. 221–40.CrossRefGoogle Scholar
  36. 36.
    J.C.R. Hunt and Sherclif J.A., Annu. Rev. Fluid Mech. 1971, vol. 3, p.37-62.CrossRefGoogle Scholar
  37. 37.
    K.R. Cramer and S.-I. Pai: Magnetofluid Dynamics for Engineers and Applied Physicists, Scripta Publishing Company, 1973.Google Scholar
  38. 38.
    P.A. Davidson: An Introduction to Magnetohydrodynamics, Cambridge University Press, Cambridge, 2001.CrossRefGoogle Scholar
  39. 39.
    D. H. Matthiesen, M. J. Wargo, S. Motakef, D. J. Carlson, J. S. Nakos and A. F. Witt, J. Cryst. Growth 1987, vol. 85, p.557-560.CrossRefGoogle Scholar
  40. 40.
    T. Emi and H. Shibata: in Solidification and Casting, B. O’Reilly, K. Cantor, eds., Institute of Physics Publishing: London, 2003, pp. 286–88.Google Scholar
  41. 41.
    H. Esaka, T. Wakabayashi, K. Shinozuka and M. Tamura, ISIJ Int. 2003, vol. 43, p.1415-1420.CrossRefGoogle Scholar
  42. 42.
    B.Q. Li, JOM 1998, vol. 50, p.1-13.Google Scholar
  43. 43.
    D. Samanta and N. Zabaras, Int. J. Heat Mass Transf. 2006, vol. 49, p.4850-4866.CrossRefGoogle Scholar
  44. 44.
    H.W. Deng, Y.J. Zhao, C.J. Liang, W.S. Jiang and Y.M. Ning, Prog. Electromagn. Res. M 2009, vol. 9, p.1-8.CrossRefGoogle Scholar
  45. 45.
    P.G. Simpson: Induction Heating: Coil and System Design, McGraw-Hill, New York, 1960.Google Scholar
  46. 46.
    A. Gupta: Risk Management and Simulation, CRC Press, Boca Raton, FL, 2013.CrossRefGoogle Scholar
  47. 47.
    Y. Mizutani, J. Kawata, K. Miwa, K. Yasue, T. Tamura and Y. Sakaguchi, J. Mater. Res. 2004, vol. 19, p.2997-3003.CrossRefGoogle Scholar
  48. 48.
    M. J. Li, T. Tamura, N. Omura and K. Miwa, J. Alloy. Compd. 2009, vol. 487, p.187-193.CrossRefGoogle Scholar
  49. 49.
    M. J. Li, T. Tamura and K. Miwa, J. Mater. Res. 2009, vol. 24, p.145-155.CrossRefGoogle Scholar
  50. 50.
    G. I. Eskin, Ultrason. Sonochem. 2001, vol. 8, p.319-325.CrossRefGoogle Scholar
  51. 51.
    D.J. Griffiths: Introduction to Electrodynamics, Prentice-Hall, USA, 1999.Google Scholar
  52. 52.
    W. Young and R. Budynas: Roark’s Formulas for Stress and Strain, 7th ed., McGraw-Hill, New York, 2001.Google Scholar
  53. 53.
    F.E. Tse, I.E. Morse, and R.T. Hinke: Mechanical Vibrations: Theory and Applications, Allyn & Bacon, Boston, NY, 1978.Google Scholar
  54. 54.
    H. T. Zhang, H. Nagaumi, Y. B. Zuo and J. Z. Cui, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2007, vol. 448, p.189-203.CrossRefGoogle Scholar
  55. 55.
    K. McManus, A. Williams, M. Cross, N. Croft and C. Walshaw, Int. J. High Perform. C. 2005, vol. 19, p.1-27.CrossRefGoogle Scholar
  56. 56.
    C. Bailey, P. Chow, M. Cross, Y. Fryer and K. Pericleous, P. Roy. Soc. A-Math. Phy. 1996, vol. 452, p.459-486.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Hunter B. Henderson
    • 1
  • Orlando Rios
    • 2
    • 3
  • Gerard M. Ludtka
    • 4
  • Michele V. Manuel
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Deposition Sciences GroupOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Department of Materials Science and EngineeringOak Ridge National Laboratory, University of TennesseeOak RidgeUSA
  4. 4.Materials Science & Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations