Skip to main content

Residual Stresses and Tensile Properties of Friction Stir Welded AZ31B-H24 Magnesium Alloy in Lap Configuration

Abstract

AZ31B-H24 Mg alloy sheets with a thickness of 2 mm were friction stir welded in lap configuration using two tool rotational rates of 1000 and 1500 rpm and two welding speeds of 10 and 20 mm/s. The residual stresses in the longitudinal and transverse directions of the weldments were determined using X-ray diffraction. The shear tensile behavior of the lap joints was evaluated at low [233 K (−40 °C)], room [298 K (25 °C)], and elevated [453 K (180 °C)] temperatures. The failure load was highest for the lower heat input condition that was obtained at a tool rotational rate of 1000 rpm and a welding speed of 20 mm/s for all the test temperatures, due to the smaller hooking height, larger effective sheet thickness, and lower tensile residual stresses, as compared to the other two welding conditions that were conducted at a higher tool rotational rate or lower welding speed. The lap joints usually fractured on the advancing side of the top sheet near the interface between the thermo-mechanically affected zone and the stir zone. Elevated temperature testing of the weld assembled at a tool rotational rate of 1000 rpm and a welding speed of 20 mm/s led to the failure along the sheet interface in shear fracture mode due to the high integrity of the joint that exhibited large plastic deformation and higher total energy absorption.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

AS:

Advancing side

BM:

Base metal

CRSS:

Critical-resolved shear stress

EST:

Effective sheet thickness

ET:

Elevated temperature

FSW:

Friction stir welding

HAZ:

Heat-affected zone

LD:

Longitudinal direction

LT:

Low temperature

RD:

Rolling direction

RS:

Retreating side

RT:

Room temperature

SEM:

Scanning electron microscope

SZ:

Stir zone

TD:

Transverse direction

TMAZ:

Thermo-mechanically affected zone

XRD:

X-ray diffraction

References

  1. 1.

    J. Murray and D. King: Nature, 2012, Vol. 481, pp. 433-35.

    Article  Google Scholar 

  2. 2.

    E. Aghion, B. Bronfin, and D. Eliezer: J. Mater. Process. Tech, 2001, Vol. 117, pp. 381-85.

    Article  Google Scholar 

  3. 3.

    Q. Schiermeier: Nature, 2011, Vol. 316, pp. 470-71.

    Google Scholar 

  4. 4.

    X. Cao, M. Jahazi, J.P. Immarigeon, and W. Wallace, J. Mater. Process. Tech, 2006, Vol. 171, pp. 88-204.

    Article  Google Scholar 

  5. 5.

    T.M. Pollock: Science, 2010. Vol. 328, pp. 986-87.

    Article  Google Scholar 

  6. 6.

    J.F. Nie, Y.M. Zhu, J.Z. Liu and X.Y. Fang: Science, 2013, Vol. 340, pp. 957-60.

    Article  Google Scholar 

  7. 7.

    W. Yuan, R.S. Mishra, B. Carlson, R. Vermac and R.K. Mishra: Mater. Sci. Eng. A, 2012, Vol. 543, pp. 200-209.

    Article  Google Scholar 

  8. 8.

    X. Cao and M. Jahazi: Mater. Des, 2009, Vol. 30, pp. 2033-2042.

    Article  Google Scholar 

  9. 9.

    S.M. Chowdhury, D.L. Chen, S.D. Bhole, and X. Cao: Procedia Engineering, 2010, Vol. 2, pp. 825-33.

    Article  Google Scholar 

  10. 10.

    C. Liu, D.L. Chen, S.D. Bhole, X. Cao, X and M. Jahazi: Materials Characterization, 2009, Vol. 60, pp. 370-76.

    Article  Google Scholar 

  11. 11.

    N. Afrin. D.L. Chen, X. Cao and M. Jahazi: Mater. Sci. Eng. A, 2008, Vol. 472(1-2), pp. 179-186.

    Article  Google Scholar 

  12. 12.

    B.S. Naik, D.L. Chen, X. Cao and P. Wanjara: Metall. Mater. Trans. A, 2013, Vol. 44A, pp. 3732-46.

    Article  Google Scholar 

  13. 13.

    B.S. Naik, D.L. Chen, X. Cao and P. Wanjara: Metall. Mater. Trans. A, 2014, Vol. 45 (10), pp. 4333-49.

    Article  Google Scholar 

  14. 14.

    H.J. Liu, H. Fuji, M. Maeda and K. Nogi: J. Mater. Process. Tech, 2003, Vol. 143, pp. 692-96.

    Article  Google Scholar 

  15. 15.

    J. Yang, B.L. Xiao, D. Wang and Z.Y. Ma: Mater. Sci. Eng. A, 2010, Vol. 527, pp. 708-14.

    Article  Google Scholar 

  16. 16.

    A. RazalRose, K. Manisekar and V. Balasubramanian: Trans. Nonferrous Met. Soc. China, 2011, Vol. 21, pp. 974-84.

    Article  Google Scholar 

  17. 17.

    D. Liu, H. Nishio and K. Nakata: Mater. Des, 2011, Vol. 32, pp. 4818-24.

    Article  Google Scholar 

  18. 18.

    H. Omar, V.R. Iris, and M. Arif: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2867–74.

    Google Scholar 

  19. 19.

    G. Bussu and P.E. Irving: Int. J. Fatigue, 2003, Vol. 25, pp. 77-88.

    Article  Google Scholar 

  20. 20.

    A. Macwan, D.L. Chen, M. Marr and O. Kesler: J. Power. Sources, 2013, Vol. 221, pp. 397-405.

    Article  Google Scholar 

  21. 21.

    ASTM International Standard ASTM D3164-03, “Standard Test Method for Strength Properties of Adhesively Bonded Lap-Shear Sandwich Joints in Shear by Tensile Loading”, 2011.

  22. 22.

    K. Deplus, A. Simar, W. Van Haver, and B. De Meester: Inter. J. Adv. Manufact. Tech, 2011, vol. 56, pp. 493–504.

    Article  Google Scholar 

  23. 23.

    O.J. Dada, C. Polese, and L.A. Cornish: Proc. Int. Multi Conf. Eng. Comput. Sci., Hong Kong, 2013, vol. II, IMECS 2013, 2013.

  24. 24.

    L. Commin, M. Dumont, R. Rotinat, F. Pierron, J. E. Masse and L. Barrallier: Mater. Sci. Eng. A, 2012, Vol. 551, pp. 288-92.

    Article  Google Scholar 

  25. 25.

    X. Cao and M. Jahazi: Mater. Des, 2011, Vol. 32, pp. 1-11.

    Article  Google Scholar 

  26. 26.

    Y.Chino, K. Sassa, and A. Kamiya: Mater. Sci. Eng. A, 2006, Vol. 441(1-2), pp. 349-56.

    Article  Google Scholar 

  27. 27.

    J. Koike, Y. Sato and D. Ando: Mater. Trans, 2008, Vol. 49(12), pp. 2792-2800.

    Article  Google Scholar 

  28. 28.

    B.H. Lee, K.S. Shin and C.S. Lee: Mater. Sci. Forum, 2005, Vol. 475-479(IV), pp. 2927-30.

    Article  Google Scholar 

  29. 29.

    H. Takuda, T. Morishita, and T. Kinoshita: J. Mater. Process. Tech, 2005, Vol. 164-165, pp. 1258-62.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and AUTO21 Network of Centers of Excellence for providing financial support. The authors also thank Professor A.A. Luo from Ohio State University (formerly with General Motors Research and Development Center) for providing the test materials. One of the authors (D.L. Chen) is grateful for the financial support by the Premier’s Research Excellence Award (PREA), NSERC-Discovery Accelerator Supplement (DAS) Award, Automotive Partnership Canada (APC), Canada Foundation for Innovation (CFI), and Ryerson Research Chair (RRC) program. The assistance of Q. Li, A. Machin, J. Amankrah, R. Churaman, and M. Guerin (NRC) in performing the experiments is gratefully acknowledged. The authors also thank Professor S.D. Bhole for the helpful discussion.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xinjin Cao or Daolun Chen.

Additional information

The following statement pertains only to authors X. Cao and P. Wanjara: Published with permission of the Crown in Right of Canada, i.e., the Government of Canada.

Manuscript submitted December 11, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naik, B.S., Cao, X., Wanjara, P. et al. Residual Stresses and Tensile Properties of Friction Stir Welded AZ31B-H24 Magnesium Alloy in Lap Configuration. Metall Mater Trans B 46, 1626–1637 (2015). https://doi.org/10.1007/s11663-015-0338-6

Download citation

Keywords

  • Residual Stress
  • Friction Stir Welding
  • Welding Speed
  • Stir Zone
  • Critical Resolve Shear Stress