Advertisement

Metallurgical and Materials Transactions B

, Volume 46, Issue 2, pp 813–823 | Cite as

Cementite Formation from Hematite–Graphite Mixture by Simultaneous Thermal–Mechanical Activation

  • Milad Ashrafzadeh
  • Amir Peyman Soleymani
  • Masoud Panjepour
  • Morteza Shamanian
Article

Abstract

In this study, the effect of simultaneous thermal–mechanical activation (STMA) process on carbothermic reduction of hematite and also on iron carbide formation has been investigated. For this purpose, the STMA process was performed for 3 and 6 hours at 973 K (700 °C) and 1073 K (800 °C) on hematite–graphite powder mixtures (with 22 wt pct C) in argon atmosphere. The XRD patterns showed that by performing this process at 973 K (700 °C), the initial hematite reduction led to the formation of wüstite in the presence of graphite. Metallic iron phase was also formed along with wüstite phase at 1073 K (800 °C) for 3 hours, and by increasing the process time to 6 hours, in addition to the metallic iron, iron carbide was also formed. The SEM images and EDS analysis obtained at 1073 K (800 °C)were also indicative of the formation of pearlite structure along with proeutectoid cementite phase and free carbon in the form of graphite in the structure of the samples. According to the results of the image analysis, the percentage of the carbon content was more than 2.22 wt pct in this process lasting for 6 hours at 1073 K (800 °C). Also, DTA results showed that the sample hot milled for 6 hours at 1073 K (800 °C) contained more than 2.1 wt pct carbon. The mechanism of metallic iron and cementite formation from hematite was proposed. Therefore, the STMA process led to an increase in the rate of carbothermic reduction of hematite to metallic iron and reduced its starting temperature relative to the non-simultaneous application of each of the thermal and mechanical activation. Finally, this process can be brought up as a new method for the production of iron carbide from iron oxides.

Keywords

Hematite Cementite Metallic Iron Carbothermic Reduction Free Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.J. Moore: J. Metall., 1982, vol. 34, pp. 39–48.Google Scholar
  2. 2.
    C.G. Davis, J.F. McFarlin, and H.R. Pratt: Ironmak. Steelmak., 1982, vol. 9, pp. 93–129.Google Scholar
  3. 3.
    R.J. Fruehan: Metall. Trans., 1973, vol. 4, pp. 2123–27.CrossRefGoogle Scholar
  4. 4.
    S. Hayashi and Y. Iguchi: ISIJ Int., 1997, vol. 37, pp. 16–20.CrossRefGoogle Scholar
  5. 5.
    S. Hayashi and Y. Iguchi: ISIJ Int., 1997, vol. 37, pp. 345–49.CrossRefGoogle Scholar
  6. 6.
    J. Zhang, O. Ostrovski, and K. Suzuki: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1139–42.CrossRefGoogle Scholar
  7. 7.
    J. Zhang and O. Ostrovski: ISIJ Int., 2001, vol. 41, pp. 333–39.CrossRefGoogle Scholar
  8. 8.
    J. Zhang, A. Schneider, and G. Inden: Corros. Sci., 2003, vol. 45, pp. 281–99.CrossRefGoogle Scholar
  9. 9.
    J. Zhang, A. Schneider, and G. Inden: Corros. Sci., 2004, vol. 46, pp. 667–79.CrossRefGoogle Scholar
  10. 10.
    J. Szekely and G. Trapaga: Metall. Plant Technol. Int., 1994, vol. 4, pp. 30–94.Google Scholar
  11. 11.
    T. Zervas, J.T. McMullan, and B C. Williams: Int. J. Energy Res., 1996, vol. 20, pp. 69–91.CrossRefGoogle Scholar
  12. 12.
    Y.K. Rao: Metall. Trans., 1971, vol. 2, pp. 1439–47.Google Scholar
  13. 13.
    M.C. Abraham and A. Ghosh: Ironmak. Steelmak., 1979, vol. 6, pp. 14–23.Google Scholar
  14. 14.
    R.J. Fruehan: Metall. Trans. B, 1977, vol. 8B, pp. 279–86.CrossRefGoogle Scholar
  15. 15.
    R. Haque and H.S. Ray: ISIJ Int., 1991, vol. 31, pp. 1279–85.CrossRefGoogle Scholar
  16. 16.
    E. Kasai, T. Kitajima, and T. Kawaguchi: ISIJ Int., 2000, vol. 40, pp. 842–49.CrossRefGoogle Scholar
  17. 17.
    Y. Iguchi and Y. Takada: ISIJ Int., 2004, vol. 44, pp. 673–81.CrossRefGoogle Scholar
  18. 18.
    Y. Iguchi and S. Yokomoto: ISIJ Int., 2004, vol. 44, pp. 2008–17.CrossRefGoogle Scholar
  19. 19.
    H. Amini, A.R. Rastgoo, and J. Khaki: ISIJ Int., 2008, vol. 5, pp. 8–14.Google Scholar
  20. 20.
    H. Sandberg: Scand. J. Metall., 1993, vol. 22, pp. 182–89.Google Scholar
  21. 21.
    M. Zdujic, C. Jovalekic, L.J. Karanovic, M. Mitric, D. Poleti, and D. Skala: Mater. Sci. Eng. A, 1998, vol. 245, pp. 109–17.CrossRefGoogle Scholar
  22. 22.
    E. Kasai, K. Mae, and F. Saito: ISIJ Int., 1995, vol. 35, pp. 1444–51.CrossRefGoogle Scholar
  23. 23.
    P. Matteazzi and G.L. Caer: J. Am. Ceram. Soc., 1991, vol. 74, pp. 1382–90.CrossRefGoogle Scholar
  24. 24.
    S.J. Campbell, G.M. Wang, A. Calka, and W.A. Kaczmarek: Mater. Sci. Eng. A, 1997, vol. 226–228, pp. 75–79.CrossRefGoogle Scholar
  25. 25.
    T.N. Rochman, K. Kawamoto, H. Sueyoshi, Y. Nakamura, and T. Nishida: J. Mater. Process. Technol., 1999, vol. 88–89, pp. 367–72.CrossRefGoogle Scholar
  26. 26.
    M. Umemoto, Y. Todaka, T. Takahashi, P. Li, R. Tokumiya, and K. Tsuchiya: Mater. Sci. Eng. A, 2004, vol. 375–377, pp. 894–98.CrossRefGoogle Scholar
  27. 27.
    P. Pourghahramani and E. Forssberg: Powder Technol., 2007, vol. 178, pp. 30–39.CrossRefGoogle Scholar
  28. 28.
    P. Pourghahramani, E. Altin, M.R. Mallembakam, W. Peukert, and E. Forssberg: Powder Technol., 2008, vol. 186, pp. 9–21.CrossRefGoogle Scholar
  29. 29.
    M. Umemoto, G.Z. Liu, K. Masuyama, J.X. Hao, and K. Tsuchiya: Scripta Mater., 2001, vol. 44, pp. 1741–45.CrossRefGoogle Scholar
  30. 30.
    J.V. Khaki, M.R. Aboutalebi, and S. Raygan: Miner. Process. Extr. Metall., 2004, vol. 25, pp. 29–47.CrossRefGoogle Scholar
  31. 31.
    Y. Kashiwaya, H. Suzuki, and K. Ishii: ISIJ Int., 2004, vol. 44, pp. 1975–80.CrossRefGoogle Scholar
  32. 32.
    Y. Kashiwaya and K. Ishi: ISIJ Int., 2004, vol. 44, pp. 1981–90.CrossRefGoogle Scholar
  33. 33.
    J. Seki and K. Nagata: ISIJ Int., 2006, vol. 46, pp. 1–7.CrossRefGoogle Scholar
  34. 34.
    P. Matteazzi and G. Lecaer: Mater. Sci. Eng. A., 1991, vol. 149, pp. 135–42.CrossRefGoogle Scholar
  35. 35.
    D. Chaira, B.K. Mishra, and S. Sangal: Powder Technol., 2009, vol. 191, pp. 149–54.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Milad Ashrafzadeh
    • 1
  • Amir Peyman Soleymani
    • 1
  • Masoud Panjepour
    • 1
  • Morteza Shamanian
    • 1
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations