Skip to main content

Advertisement

Log in

Evaluation of Matusita Equation and Its Modified Expression for Determining Activation Energy Associated with Melt Crystallization

  • Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Both the Matusita equation and the modified Matusita equation for estimating the activation energy associated with non-isothermal crystallization were critically evaluated. The derivation for melts crystallization on cooling indicates that, unlike for the crystallization that occurs on heating, the term 1 − exp (−ΔG/RT) in the basic rate equation of crystal growth and the term \( \int_{0}^{{T_{\text{s}} }} {\exp ( - E/{{R}}T)dT} ) \) depending on the initial temperature of the cooling process cannot be neglected. It is demonstrated that both the Matusita equation and its modified expression are only valid to estimate the activation energy associated with the crystallization that occurs on heating, but are inapplicable for the melt crystallization that occurs on cooling. It is suggested that the isoconversional methods of Friedman and Vyazovkin should be alternative to determine effective activation energy for melt crystallization that occurs on cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.E. Kissinger: Anal. Chem., 1957, vol. 29, pp. 1702-6.

    Article  Google Scholar 

  2. T. Ozawa: J. Therm. Anal., 1970, vol. 2, pp. 301-24.

    Article  Google Scholar 

  3. H.S. Chen: J. Non-Cryst. Solids, 1978, vol. 27, pp. 257-63.

    Article  Google Scholar 

  4. K. Matusita and S. Sakka: J. Non-Cryst. Solids, 1980, vols. 38-9, pp. 741-6.

    Article  Google Scholar 

  5. K. Matusita, T. Komatsu, and R. Yokota: J. Mater. Sci., 1984, vol. 19, 291-6.

    Article  Google Scholar 

  6. C.T. Cheng, M. Lanaganw, B. Jones, J.T. Lin, and M.J. Pan: J. Am. Ceram. Soc., 2005, vol. 88, pp. 3037-42.

    Article  Google Scholar 

  7. B. Rangarajan, T. Shrout, and M. Lanagan: J. Am. Ceram. Soc., 2009, vol. 92, pp. 2642-7.

    Article  Google Scholar 

  8. S.R. Teixeiraw, M. Romero, and J.M. Rincón: J. Am. Ceram. Soc., 2010, vol. 93, pp. 450-5.

    Article  Google Scholar 

  9. M. Romero, J. Martíın-Márquez, and J.M. Rincón: J. Eur. Ceram. Soc., 2006, vol. 26, pp. 1647-52.

    Article  Google Scholar 

  10. Z. Wang, Q. Shu, and K. Chou: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 606-13.

    Article  Google Scholar 

  11. M. Joshi and B.S. Butola: Polymer, 2004, vol. 45, pp. 4953-68.

    Article  Google Scholar 

  12. S.H. Kim, S.H. Ahn, and T. Hirai: Polymer, 2003, vol. 44, pp. 5625-34.

    Article  Google Scholar 

  13. T. Liu, Z. Mo, S. Wang, and H. Zhang: Polym. Eng. Sci., 1997, vol. 37, pp. 568-75.

    Article  Google Scholar 

  14. K.Y. Mya, K.P. Pramoda, and C.B. He: Polymer, 2006, vol. 47, pp. 5035-43.

    Article  Google Scholar 

  15. S. Zhao, Z. Cai, and Z. Xin: Polym., 2008, vol. 49, pp. 2745-54.

    Article  Google Scholar 

  16. S.Y. Choi, D.H. Lee, D.W. Shin, S.Y Choi, J.W. Cho, and J.M. Park: J. Non-Cryst. Solids, 2004, vols. 345-6, pp. 157-60.

    Article  Google Scholar 

  17. L. Gan, C.X. Zhang, J.C. Zhou, and F.Q. Shangguan: J. Non-Cryst. Solids, 2012, vol. 358, pp. 20-4.

    Article  Google Scholar 

  18. K. Matusita, K. Miura, and T. Komatsu: Thermochim. Acta, 1985, vol. 88, pp. 283-8.

    Article  Google Scholar 

  19. K. Matusita, S. Sakka, and Y. Matsui: J. Mater. Sci., 1975, vol. 10, 961-6.

    Article  Google Scholar 

  20. K. Matusita and S. Sakka: Phys. Chem. Glass, 1979, vol. 20, 81-4.

    Google Scholar 

  21. K. Matusita and S. Sakka: Thermochim. Acta, 1979, vol. 33, 351-4.

    Article  Google Scholar 

  22. C.D. Doyle: J. Appl. Polym. Sci., 1961, vol. 5, p. 285.

    Article  Google Scholar 

  23. A.L. Oliveira, J.M. Oliveira, R. N. Correia, H.V. Maria, and R.F. Jorge: J. Am. Ceram. Soc., 1998, vol. 81, pp. 3270-6.

    Article  Google Scholar 

  24. S. Vyazovkin: Macromol. Rapid Commun., 2002, vol. 23, pp. 771-5.

    Article  Google Scholar 

  25. N. Bosq, N. Guigo, E. Zhuravlev, and N. Sbirrazzuoli: J. Phys. Chem. B, 2013, vol. 117, pp. 3407-15.

    Article  Google Scholar 

  26. N.B. Hannay: Treatise on Solid State Chemistry, vol. 3: Crystalline and Noncrystalline Solids, Plenum Press, New York, 1976, pp. 50-5.

    Google Scholar 

  27. S. Vyazovkin and N. Sbirrazzuoli: Macromol. Rapid Commun., 2004, vol. 25, pp. 733-8.

    Article  Google Scholar 

  28. H.L. Friedman: J. Polym. Sci. Part C, 1964, vol. 6, pp. 183-95.

    Article  Google Scholar 

  29. G.Z. Papageorgioua, D.S. Achiliasa, S. Nanakia, T. Beslikasb, and D. Bikiaris: Thermochim. Acta, 2010, vol. 511, pp. 129-39.

    Article  Google Scholar 

  30. H. Liang, F. Xie, F. Guo, B. Chen, F. Luo, and Z. Jin: Polym. Bull., 2008, vol. 60, pp. 115-27.

    Article  Google Scholar 

  31. N. Apiwanthanakorn, P. Supaphol, and M. Nithitanakul: Polym. Test., 2004, vol. 23, pp. 817-26.

    Article  Google Scholar 

  32. A.A. Joraid: Thermochim. Acta, 2007, vol. 456, pp. 1-6.

    Article  Google Scholar 

  33. P. Supaphol, N. Dangseeyun, P. Srimoaon, and M. Nithitanakul: Thermochim. Acta, 2003, vol. 406, pp. 207-20.

    Article  Google Scholar 

  34. C.B. Shi, M.D. Seo, H. Wang, J.W. Cho, and S.H. Kim: Metall. Mater. Trans. B, 2014, DOI:10.1007/s11663-014-0180-2.

Download references

This work was financially supported by the Global Excellent Technology Innovation (Grant No. 10045029) funded by the Ministry of Trade, Industry & Energy (MOTIE) of Korea. This work was also supported by the State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing (Grant No. 41603017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Bin Shi or Jung-Wook Cho.

Additional information

Manuscript submitted July 19, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, CB., Wang, H., Seo, MD. et al. Evaluation of Matusita Equation and Its Modified Expression for Determining Activation Energy Associated with Melt Crystallization. Metall Mater Trans B 45, 1987–1991 (2014). https://doi.org/10.1007/s11663-014-0217-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0217-6

Keywords

Navigation