Skip to main content
Log in

Numerical Prediction of the Accessible Convection Range for an Electromagnetically Levitated Fe50Co50 Droplet in Space

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

From December 2014, a series of space experiments will be performed to investigate the influence of the convection on the multiphase solidification phenomena of metallic alloys. For the success of the mission, it is of critical importance to predict the convection in molten samples under given test parameters. In this research, the convection induced in the molten Fe50Co50 alloy was predicted numerically. The magnetohydrodynamic model for the ground-based electromagnetic levitator developed in the previous research was extended to the space application. The same modeling strategies were applied to the electromagnetic levitator in space. Using the numerical model, the convection under various test conditions was predicted: The flow pattern was characterized as a function of the heating current. The maximum convection velocity at various temperatures was estimated with the increasing heating current. Finally, the range of accessible convection velocity was predicted as a function of the critical undercooling of the sample, the minimum positioner control voltage, and the undercooling of the sample. The results are expected to provide critical information for the design of the space experiments and the interpretation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.M. Matson, R.W. Hyers and T. Volkmann: Jpn. Soc. of Microgravity Appl. J., 2010, vol. 27, pp. 238-44.

    Google Scholar 

  2. T. Koseki and M.C. Flemings: Metall. Mater. Trans., 1995, vol. 26A, pp. 2991-99.

    Article  Google Scholar 

  3. U. Hecht, L. Granasy, T. Pusztai, B. Boettger, M. Apel, V. Witusiewicz, S.G. Fries, B. Legendre and S. Rex: Mater. Sci. Eng. R, 2004, vol. 46, pp. 1-49.

    Article  Google Scholar 

  4. A.B. Hanlon, D.M. Matson and R.W. Hyers: Ann. NY Acad. Sci., 2006, vol. 1077, pp. 33-48.

    Article  Google Scholar 

  5. D.M. Matson, D.J. Fair, R.W. Hyers and J.R. Rogers: Ann. NY Acad. Sci., 2004, vol. 1027, pp. 435-66.

    Article  Google Scholar 

  6. A.B. Hanlon, D.M. Matson and R.W. Hyers: Phil. Mag. Lett., 2006, vol. 86, pp. 165-74.

    Article  Google Scholar 

  7. R.W. Hyers: Meas. Sci. Technol., 2005, vol. 16, pp. 394-401.

    Article  Google Scholar 

  8. R.W. Hyers, D.M. Matson, K.F. Kelton and J.R. Rogers: Ann. NY Acad. Sci., 2004, vol. 1027, pp. 474-94.

    Article  Google Scholar 

  9. J. Lee, D.M. Matson, S. Binder, M. Kolbe, D. Herlach and R.W. Hyers: Metall. Mater. Trans, 2014, vol. 45B, pp. 1018-1023.

    Article  Google Scholar 

  10. G. Lohoefer and J. Piller: 40th AIAA Aerospace Sciences Meeting & Exhibition, Reno, 2002, pp. 764–68.

  11. R.W. Hyers, G. Trapaga and B. Abedian: Metall. Mater. Trans., 2003, vol. 34B, pp. 29-36.

    Article  Google Scholar 

  12. J. Lee, X. Xiao, D.M. Matson and R.W. Hyers: TMS, San Antonio, 2013, Doi: 10.1002/9781118663547.ch58.

  13. D.C. Wilcox: Turbuence Modeling for CFD, DCW Industries, La Canada, CA, 2006, pp. 128-30.

    Google Scholar 

  14. V. Yahkot, S.A. Orszag, S. Thangam, T.B. Gatski and C.G. Speziale: Phys. Fluids A, 1992, vol. 4, pp. 1510-20.

    Article  Google Scholar 

  15. S. Berry, R.W. Hyers, B. Abedian and L.M. Racz: Metall. Mater. Trans., 2000, vol. 31B, pp. 171-78.

    Article  Google Scholar 

  16. S. Watanabe: Jpn. Inst. Metals Mater., 1971, vol. 12, pp. 17-22.

    Google Scholar 

  17. S. Sato, K. Sugisawa, D. Aoki and T. Yamaura: Meas. Sci. Technol., 2005, vol. 16, pp. 363-71.

    Article  Google Scholar 

  18. Y. Kita and Z. Morita: J. Non-Cryst. Solids, 1984, vol. 61&62, pp. 1.

    Google Scholar 

Download references

Acknowledgments

This project is sponsored by NASA under Grants NNX10AR71G, NNX08AL21G, and NX10AV27G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonghyun Lee.

Additional information

Manuscript submitted July 9, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Xiao, X., Matson, D.M. et al. Numerical Prediction of the Accessible Convection Range for an Electromagnetically Levitated Fe50Co50 Droplet in Space. Metall Mater Trans B 46, 199–207 (2015). https://doi.org/10.1007/s11663-014-0178-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0178-9

Keywords

Navigation