Skip to main content
Log in

Phase-Field Simulation of Concentration and Temperature Distribution During Dendritic Growth in a Forced Liquid Metal Flow

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A phase-field model with convection is employed to investigate the effect of liquid flow on the dendritic structure formation of a Ni-Cu alloy during rapid solidification. Temperature and solute diffusion are significantly changed with induced liquid metal flow, and distribution changes of concentration and temperature are also analyzed and discussed. The solute segregation is affected due to the concentration diffusion layer thickness change caused by the liquid flow. The flow reduces the solute segregation in the upstream and leads to a fast dendrite growing, while solidifying in the downstream gets constrained with the large solute diffusion layer. Increasing flow velocity increases the asymmetry of dendrite morphology with much more suppressed growth in the downstream. The temperature distribution is also asymmetrical due to the non-uniform latent heat released during solidification coupling with heat diffusion changed by the liquid flow. Therefore, the forced liquid flow significantly affects the dendrite morphology, concentration, and temperature distributions in the solidifying microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. L.Q. Chen: Annu. Rev. Mater. Res., 2002, vol. 32, pp. 113–40.

    Article  Google Scholar 

  2. I. Steinbach: Model. Simul. Mater. Sci., 2009, vol. 17, p. 073001.

    Article  Google Scholar 

  3. R. Kobayashi: Physica D, 1993, vol. 63, pp. 410–23.

    Article  Google Scholar 

  4. J.A. Warren and W.J. Boettinger: Acta Metall. Mater., 1995, vol. 43, pp. 689–703.

    Article  Google Scholar 

  5. A. Karma and W.J. Rappel: Phys. Rev. E, 1998, vol. 57, pp. 4323–49.

    Article  Google Scholar 

  6. S.G. Kim, W.T. Kim, and T. Suzuki: Phys. Rev. E, 1999, vol. 60, pp. 7186–97.

    Article  Google Scholar 

  7. A. Karma: Phys. Rev. Lett., 2001, vol. 87, p. 045501.

    Article  Google Scholar 

  8. I. Loginova, G. Amberg, and J. Agren: Acta Mater., 2001, vol. 49, pp. 573–81.

    Article  Google Scholar 

  9. J.A. Warren, R. Kobayashi, A.E. Lobovsky, and W.C. Carter: Acta Mater., 2003, vol. 51, pp. 6035–58.

    Article  Google Scholar 

  10. A. Badillo and C. Beckermann: Acta Mater., 2006, vol. 54, pp. 2015–26.

    Article  Google Scholar 

  11. J.J. Li, J.C. Wang, and G.C. Yang: J. Cryst. Growth, 2007, vol. 309, pp. 65–69.

    Article  Google Scholar 

  12. Z.J. Wang, J.J. Li, J.C. Wang, and Y.H. Zhou: Acta Mater., 2012, vol. 60, pp. 1957–64.

    Article  Google Scholar 

  13. A. Karma and W.J. Rappel: Phys. Rev. E, 1996, vol. 53, pp. R3017–20.

    Article  Google Scholar 

  14. B. Nestler, H. Garcke, and B. Stinner: Phys. Rev. E, 2005, vol. 71, p. 041609.

    Article  Google Scholar 

  15. Y.L. Huang, A. Bracchi, T. Niermann, M. Seibt, D. Danilov, B. Nestler, and S. Schneider: Scripta Mater., 2005, vol. 53, pp. 93–97.

    Article  Google Scholar 

  16. R.J. Zhang, M. Li, and J. Allison: Comput. Mater. Sci., 2010, vol. 47, pp. 832–38.

    Article  Google Scholar 

  17. B. Nestler and A. Choudhury: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 93–105.

    Article  Google Scholar 

  18. L.F. Du, R. Zhang, L.M. Zhang, and L. Liu: in The 8th Pacific Rim International Congress on Advanced Materials and Processing, ed. F. Marquis, Wiley, New York, 2013, pp. 2765–72.

  19. A. Bogno, G. Reinhart, A. Buffet, H.N. Thi, B. Billia, T. Schenk, N. Mangelinck-Noel, N. Bergeon, and J. Baruchel: J. Cryst. Growth, 2011, vol. 318, pp. 1134–38.

    Article  Google Scholar 

  20. A. Bogno, H. Nguyen-Thi, A. Buffet, G. Reinhart, B. Billia, N. Mangelinck-Noel, N. Bergeon, J. Baruchel, and T. Schenk: Acta Mater., 2011, vol. 59, pp. 4356–65.

    Article  Google Scholar 

  21. N. Bergeon, A. Ramirez, L. Chen, B. Billia, J.H. Gu, and R. Trivedi: J. Mater. Sci., 2011, vol. 46, pp. 6191–202.

    Article  Google Scholar 

  22. Y. Chen, A.A. Bogno, N.M. Xiao, B. Billia, X.H. Kang, H. Nguyen-Thi, X.H. Luo, and D.Z. Li: Acta Mater., 2012, vol. 60, pp. 199–207.

    Article  Google Scholar 

  23. C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma, and X. Tong: J. Comput. Phys., 1999, vol. 154, pp. 468–96.

    Article  Google Scholar 

  24. C.W. Lan and C.J. Shih: J. Cryst. Growth, 2004, vol. 264, pp. 472–82.

    Article  Google Scholar 

  25. C.W. Lan and C.J. Shih, Phys. Rev. E, 2004, vol. 69, p. 031601.

    Article  Google Scholar 

  26. C.W. Lan, M.H. Lee, M.H. Chuang, and C.J. Shih: J. Cryst. Growth, 2006, vol. 295, pp. 202–208.

    Article  Google Scholar 

  27. D. Medvedev and K. Kassner: Phys. Rev. E, 2005, vol. 72, p. 056703.

    Article  Google Scholar 

  28. D. Medvedev, T. Fischaleck, and K. Kassner: Phys. Rev. E, 2006, vol. 74, p. 031606.

    Article  Google Scholar 

  29. M. Amoorezaei, S. Gurevich, and N. Provatas: Acta Mater, 2010, vol. 58, pp. 6115–24.

    Article  Google Scholar 

  30. R.Z. Xiao, Z.P. Wang, C.S. Zhu, W.S. Li, and L. Feng: Adv. Mater. Res. Switz., 2011, vol. 154–155, pp. 401–406.

    Google Scholar 

  31. L.F. Du, R. Zhang, and L.M. Zhang: Sci. China Technol. Sci., 2013, vol. 56, pp. 2586–93.

    Article  Google Scholar 

  32. W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma: Annu. Rev. Mater. Res., 2002, vol. 32, pp. 163–94.

    Article  Google Scholar 

  33. J.D. Anderson: Computational Fluid Dynamics: The Basics with Applications, McGraw-Hill, New York, 1995.

    Google Scholar 

  34. A.A. Wheeler, W.J. Boettinger, and G.B. McFadden: Phys. Rev. A, 1992, vol. 45, pp. 7424–39.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the financial support from the NPU Foundation of Fundamental Research, China (No. JC201272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifei Du.

Additional information

Manuscript submitted April 14, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., Zhang, R. Phase-Field Simulation of Concentration and Temperature Distribution During Dendritic Growth in a Forced Liquid Metal Flow. Metall Mater Trans B 45, 2504–2515 (2014). https://doi.org/10.1007/s11663-014-0161-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0161-5

Keywords

Navigation