Skip to main content
Log in

Effect of Titanium and Niobium on Modifying the Microstructure of Cast K100 Tool Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effects of Ti and Nb on the microstructure of cast K100 tool steel were studied by optical and scanning electron microscopes. The amounts of Ti as 0.3, 0.7, and 1 wt pct and Nb as 0.2 and 1 wt pct were added to the studied steel. The addition of 0.3 wt pct Ti did not result in a considerable change in the size of carbides and prior austenite grain size. However, microstructure of K100 with 0.7 and 1 wt pct Ti was considerably modified (about 55 pct) and a uniform grain size was obtained at different positions (bottom, middle, and top) of the ingot. With addition of 0.2 and 1 wt pct Nb, microstructure was modified and a more uniform grain size was obtained all over the ingot. The average modification of microstructure in the bottom, middle, and top of the ingot was about 22 pct. Both Ti and Nb could effectively decrease the segregation of Cr and C from the bottom (high cooling rate positions) to the top of the ingots (low cooling rate positions). The homogeneity of chemical composition increased with increasing Nb or Ti. In alloy with 0.7 to 1 wt pct Ti, the average size of prior austenite grains was finer than alloys with 0.2 to 1 wt pct Nb. Therefore, Ti was found more capable than Nb in the modification of microstructure and decreasing the segregation of Cr and C in cast K100 tool steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. M.C. Mataya, E.R. Nilsson, E.L. Brown and G. Krauss: Met. Mater. Trans., 2003, vol. A34, pp. 3021-41.

    Article  Google Scholar 

  2. Q. Liu, H.i Zhang, Q. Wang, X. Zhou, P.G. Jönsson and K, Nakajima: ISIJ Int., 2012, vol. 52, pp. 2210-9.

    Article  Google Scholar 

  3. A. Momeni, S.M. Abbasi and A. Shokuhfar: J. Mater. Sci. Technol., 2007, vol. 1466, pp. 66-70.

    Google Scholar 

  4. Y. Zhang, G. Wu, W. Liu, L. Zhang, S. Pang, Y. Wang and W. Ding: Mater. Sci. Eng., 2014, vol. A595, pp. 109-17.

    Article  Google Scholar 

  5. V. Thursdiyanto, E.-J. Bae and E.-R. Baek, J. Mater. Sci., Technol., 2008, vol. 24 pp. 343-6.

    Article  Google Scholar 

  6. A. Wiengmoon, T. Chairuangsri, N. Chomsang, N. Poolthong and J.T.H. Pearce: J. Mater. Sci. Technol., 2008, vol. 24, pp. 330-4.

    Google Scholar 

  7. A. Yilmaz: Met. Sci. Heat Treat., 2012, vol. 54, pp. 349-54.

    Article  Google Scholar 

  8. Q. Liu, P. Hedström, H. Zhang, Q. Wang, P.G. Jönsson and K. Nakajima: ISIJ Int., 2012, vol. 52, pp. 2288-94.

    Article  Google Scholar 

  9. Y. Li, J.A. Wilson, D.N. Crowther, P.S. Mitchell, A.J. Craven and T.N. Baker: ISIJ Int., 2004, vol. 44, pp. 1093-102.

    Article  Google Scholar 

  10. A. Guillet, E. Es-Sadiqi, G. L’EspÉRance and F.G. Hamel: ISIJ Int., 1996, vol. 36, pp. 1190-8.

    Article  Google Scholar 

  11. L. Yanjun, J. Qichuan, Z. Yuguang and H. Zhenmin: J. Mater. Sci. Lett., 1996, vol. 15, pp. 1584-6.

    Google Scholar 

  12. H. Halfa, T. Mattar and M. Eissa: Steel Res. Int., 2012, vol. 83, pp. 1071-8.

    Article  Google Scholar 

  13. H. Todoroki, M. Oikawa, K. Wang, Y. Kobayashi and T. Ishii: ISIJ Int., 2008, vol. 48, pp. 256-63.

    Article  Google Scholar 

  14. S. Karagöz, A. Yilmaz, Y. Subasi, and A. Karaslan: Proc. 15th IFHTSE and SMT 20 (International Federation for Heat Treatment and Surface Modification Technologies Congress), ASMET, Vienna, Austria, 25–29 Sept., 2006, pp. 113–19.

  15. P. Ding, G. Shi and S. Zhon: Metall. Trans. 1993, vol. 24A, pp. 1265-72.

    Article  Google Scholar 

  16. S. Karagöz, H.F. Fischmeister, Metall. Mater. Trans. A, 1998, vol. 19A, pp. 1395-401.

    Google Scholar 

  17. S. Wilmez and G. Zwick: Volume 2 of Proceedings of the 6th International Tooling Conference: The Use of Tool Steels: Experience and Research, J. Bergstrom, ed., Karlstad University, 2002, pp. 269–73.

  18. B. Piekarski: Mater. Character., 2010, 61, pp. 899-906.

    Article  Google Scholar 

  19. S. Zheng, C. Davis and M. Strangwood: Mater. Character., 2014, 95, pp. 94-104.

    Article  Google Scholar 

  20. B. Piekarski: Mater. Character., 2001, 47, pp. 181-186.

    Article  Google Scholar 

  21. M. Filipovic, Z. Kamberovic, M, Korac and M. Gavrilovski: Mater. Design, 2013, 47, pp. 41-48.

    Article  Google Scholar 

  22. L.A. Dobrzanski, J. Mazurkiewicz and E. Hajduczek: J. Mater. Process. Technol., 2004, vol. 157-158, pp. 472-84.

    Article  Google Scholar 

  23. B. Yordanov: J. Univ. Chem. Technol. Metall., 2012, vol. 47, pp. 327-32.

    Google Scholar 

  24. ASTM Standard E3-11, Standard Guide for Preparation of Metallographic Specimens.

  25. V.G. Rivilin: Int. Met. Review, 1984, vol. 29, pp. 299-328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Mirzaee.

Additional information

Manuscript submitted March 6, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaee, M., Momeni, A., Keshmiri, H. et al. Effect of Titanium and Niobium on Modifying the Microstructure of Cast K100 Tool Steel. Metall Mater Trans B 45, 2304–2314 (2014). https://doi.org/10.1007/s11663-014-0150-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0150-8

Keywords

Navigation