Metallurgical and Materials Transactions B

, Volume 45, Issue 6, pp 2315–2326 | Cite as

Physical Simulation of Hot Rolling of Ultra-fine Grained Pure Titanium

  • Alexander Polyakov
  • Dmitry Gunderov
  • Vil’ Sitdikov
  • Ruslan Valiev
  • Irina Semenova
  • Ilchat Sabirov
Article

Abstract

Complex thermo-mechanical processing routes are often developed for fabrication of ultra-fine grained (UFG) metallic materials with superior mechanical properties. The processed UFG metallic materials often have to undergo additional metalforming operations for fabrication of complex shape parts or tools that can significantly affect their microstructure and crystallographic texture, thus further changing their mechanical properties. The development of novel thermo-mechanical processing routes for fabrication of UFG metallic materials or for further metalforming operations is very time-consuming and expensive due to much higher cost of the UFG metallic materials. The objective of this work is to perform physical simulation of hot rolling of UFG pure Ti obtained via severe plastic deformation and to analyze the effect of hot rolling on the microstructure, crystallographic texture, and hardness of the material. It is demonstrated that physical simulation of metalforming processes for UFG metallic materials can significantly reduce the amount of material required for development of processing routes as well as to increase the efficiency of experimental work.

References

  1. 1.
    G. Lutjering, J.C. Williams: Titanium. Springer, Berlin, 2003, pp. 5-10.CrossRefGoogle Scholar
  2. 2.
    V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev: Mater. Sci. Eng. A, 2001, vol. 299, pp. 59–67.CrossRefGoogle Scholar
  3. 3.
    D.H. Shin, I. Kim, J. Kim, Y.S. Kim, S.L. Semiatin: Acta Mater., 2003, vol. 51, pp. 983–96.CrossRefGoogle Scholar
  4. 4.
    G.I. Raab, E.P. Soshnikova, R.Z. Valiev: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 674–7.CrossRefGoogle Scholar
  5. 5.
    Y.G. Ko, D.H. Shin, K.T. Park, C.S. Lee: Scripta Mater., 2006, vol. 54, pp. 1785–9.CrossRefGoogle Scholar
  6. 6.
    G.G. Yapici, I. Karaman, H.J. Maier: Mater. Sci. Eng. A, 2006, vol. 434, pp. 294–302.CrossRefGoogle Scholar
  7. 7.
    J. Gubicza, Zs. Fogarassy, Gy. Krallics, J. Labar, T. Torkoly: Mater. Sci. Forum, 2008, vol. 589, pp. 99-104.CrossRefGoogle Scholar
  8. 8.
    Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungar, Y.M. Wang, E. Ma, R.Z. Valiev: J. Mater. Res., 2003, vol. 18, pp. 1908-1917.CrossRefGoogle Scholar
  9. 9.
    I. Sabirov, M.T. Perez-Prado, J.M. Molina-Aldareguia, I.P. Semenova, G.Kh. Salimgareeva, R.Z. Valiev: Scripta Mater., 2011, vol. 64, pp. 69–72.CrossRefGoogle Scholar
  10. 10.
    H.S. Kim, S.J. Kim, J.W. Kim, D.H. Kim, W.J. Kim: Mater. Sci. Eng. A., 2011, vol. 528, pp. 8479-85.CrossRefGoogle Scholar
  11. 11.
    V.L. Sordi, M. Ferrante, M. Kawasaki, T.G. Langdon: J. Mater. Sci., 2012, vol. 47, pp. 7870-6.CrossRefGoogle Scholar
  12. 12.
    D.V. Gunderov, A.V. Polyakov, I.P. Semenova, G.I. Raab, A.A. Churakova, E.I. Gimaltdinova, I. Sabirov, J. Segurado, V.D. Sitdikov, I.V. Alexandrov, N.A. Enikeev, R.Z. Valiev: Mater. Sci. Eng. A, 2013, vol. 562, pp. 128-36.CrossRefGoogle Scholar
  13. 13.
    I. Sabirov, R.Z. Valiev, I.P. Semenova, R. Pippan: Metall. Mater. Trans. A, 2010, vol. 41, pp. 727-33.CrossRefGoogle Scholar
  14. 14.
    L. Mishnaevsky, E. Levashov, R.Z. Valiev, J. Segurado, I. Sabirov, N. Enikeev, S. Prokoshkin, A.V. Solov’yov, A. Korotitskiy, E. Gutmanas, I. Gotman, E. Rabkin, S. Psakh’e, M. Seefeldt, A. Smolin: Mater. Sci. Eng. R, 2014, vol. 81, pp. 1-19.CrossRefGoogle Scholar
  15. 15.
    R.Z. Valiev, I. Sabirov, A.P. Zhilyaev, T.G. Langdon: JOM, 2012, vol. 64, pp. 1134-42.CrossRefGoogle Scholar
  16. 16.
    V.V. Stolyarov, L. Zeipper, B. Mingler, M. Zehetbauer: Mater. Sci. Eng. A, 2008, vol. 476, pp. 98-105.CrossRefGoogle Scholar
  17. 17.
    Z. Fan, H. Jiang, X. Sun, J. Song, X. Zhang, C. Xie: Mater. Sci. Eng. A, 2009, vol. 527, pp. 45–51.CrossRefGoogle Scholar
  18. 18.
    V.V. Stolyarov, Ya.E. Beigel’zimer, D.V. Orlov, and R.Z. Valiev: Phys. Metal. Metall., 2005, vol. 99, pp. 204–11.Google Scholar
  19. 19.
    A. Taylor, M. Weiss, T. Hilditch, N. Stanford, P.D. Hodgson: Mater. Sci. Eng. A., 2012, vol. 555, pp. 148-53.Google Scholar
  20. 20.
    E.C. Moreno-Valle, M.A. Monclus, J.M. Molina-Aldareguia, N. Enikeev, I. Sabirov: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2399-408.CrossRefGoogle Scholar
  21. 21.
    O. Saray, G. Purcek, I. Karaman, H.J. Maier: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4194-206.CrossRefGoogle Scholar
  22. 22.
    D. Ferguson, W. Chen, T. Bonesteel, J. Vosburgh: Mater. Sci. Eng. A, 2009, vol. 499, pp. 329-32.CrossRefGoogle Scholar
  23. 23.
    S.T. Mandziej: Mater. Tech., 2010, vol. 44, pp. 105-19.Google Scholar
  24. 24.
    Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon: Scripta Mater., 1996, vol. 35, pp. 143–6.CrossRefGoogle Scholar
  25. 25.
    R.Z. Valiev, T.G. Langdon: Prog. Mater. Sci., 2006, vol. 51, pp. 881–981.CrossRefGoogle Scholar
  26. 26.
    D. Green: J. Inst. Metals., 1972, vol. 100, pp. 295.Google Scholar
  27. 27.
    H. Shi, A.J. McLaren, C.M. Sellars, R. Shahani, R. Bolingbroke: J. Testing Eval., 1997, vol. 25, pp. 61-73.CrossRefGoogle Scholar
  28. 28.
    J.H. Beynon, C.M. Sellars: J. Testing Eval., 1985, vol. 13, pp. 28-38.CrossRefGoogle Scholar
  29. 29.
    M.C. Mirza, C.M. Sellars: Mater. Sci. Tech., 2001, vol. 17, pp. 1133-41.CrossRefGoogle Scholar
  30. 30.
    M.C. Mirza, C.M. Sellars: Mater. Sci. Tech., 2001, vol. 17, pp. 1142-8.CrossRefGoogle Scholar
  31. 31.
    N.J. Silk, M.R. van der Winden: Mater. Sci. Tech., 1999, vol. 15, pp. 295-300.CrossRefGoogle Scholar
  32. 32.
    S. Hosford: Acta Metal., 1966, vol. 14, pp. 1085-94.CrossRefGoogle Scholar
  33. 33.
    G.E. Dieter: in ASM Handbook of Workability and Process Design, G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2003, pp. 61–67.Google Scholar
  34. 34.
    U.F. Kocks, C.N. Tome, H.R. Wenk, Texture and anisotropy, Cambridge University Press, Cambridge, 2000, pp. 203-7.Google Scholar
  35. 35.
    L. Lutterotti, S. Matthies, and H.R. Wenk: Proceeding of the 12th International Conference on Textures of Materials (ICOTOM-12), 1999, p. 1599.Google Scholar
  36. 36.
    G.K. Williamson and R.E. Smallman: Philos. Mag., 1956, vol. 1, p. 34.CrossRefGoogle Scholar
  37. 37.
    Conrad H, Jones R. The Science, Technology and Application of Titanium. Oxford, New York: Pergamon Press; 1970; 493.Google Scholar
  38. 38.
    I. Kim, W.S. Jeong, J. Kim, K.T. Park, D.H. Shin: Scripta Mater., 2001, vol. 45, pp. 575-581.CrossRefGoogle Scholar
  39. 39.
    L. Wang, Y.C. Wang, A.P. Zhilyaev, A.V. Korznikov, S.K. Li, E. Korznikova, T.G. Langdon: Scripta Mater., 2014, vol. 77, pp. 33-36.CrossRefGoogle Scholar
  40. 40.
    N.P. Gurao, S. Suwas: J. Mater. Res., 2011, vol. 26, pp. 523-532.CrossRefGoogle Scholar
  41. 41.
    H. Gleiter: Phys. Stat. Sol., 2006, vol. 172, pp. 41-51.CrossRefGoogle Scholar
  42. 42.
    Y.J. Chen, Y.J. Li, J.C. Walmsley, S. Dumoulin, P.C. Skaret, H.J. Roven: Mater. Sci. Eng. A, 2010, vol. 527, pp. 789–796.CrossRefGoogle Scholar
  43. 43.
    S. Sandlöbes, I. Schestakow, S. Yi, S. Zaefferer, J. Chen, M. Friák, J. Neugebauer, D. Raabe: Mater. Sci. Forum, 2011, vol. 690, pp 202-205.CrossRefGoogle Scholar
  44. 44.
    B. Kashyap, P.D. Hodgson, Y. Estrin, I. Timokhina, M.R. Barnett, I. Sabirov: Metall. Mater. Trans. A, 2009, vol. 40, pp. 3294-3303.CrossRefGoogle Scholar
  45. 45.
    Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh, E. Ma: Acta Mater., 2004, vol. 52, pp. 1859–1869.CrossRefGoogle Scholar
  46. 46.
    K. Hajizadeh, S. Ghobadi Alamdari, B. Eghbali: Physica B, 2013, vol. 417, pp. 33-38.CrossRefGoogle Scholar
  47. 47.
    G. Gottstein, L.S. Shvindlerman: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications (2nd Edition). CRC Press, Boca Raton, USA, 2009, p. 711.CrossRefGoogle Scholar
  48. 48.
    I. Alexandrov, J. Bonarski, A. Korshunov, L. Tarkowski, V. Sitdikov. Archives Metall. Mater., 2008, vol. 53, pp. 237-241.Google Scholar
  49. 49.
    Y.N. Wang, J.C. Huang: Mater. Chem. Phys., 2003, vol. 81, pp. 11–26.CrossRefGoogle Scholar
  50. 50.
    S. Suwas, N.P. Gurao: Journal of the Indian Institute of Science, 2008, vol. 88, pp. 151-177.Google Scholar
  51. 51.
    N. Bozzolo, N. Dewobroto, H. R. Wenk, F. Wagner. J. Mater. Sci., 2007, vol. 42, pp. 2405–2416.CrossRefGoogle Scholar
  52. 52.
    J.D. Embury: in Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., Elsevier, Essex, 1971, pp. 331–402.Google Scholar
  53. 53.
    E.O. Hall: Proc. Phys. Soc., 1951, vol. B64, pp. 747–53.CrossRefGoogle Scholar
  54. 54.
    N.J. Petch: J. Iron. Steel Inst., 1953, vol. 174, pp. 25–8.Google Scholar
  55. 55.
    T.G. Langdon: Acta Mater., 2013, vol. 61, pp. 7035-59.CrossRefGoogle Scholar
  56. 56.
    I. Sabirov, M.Y. Murashkin, R.Z. Valiev: Mater. Sci. Eng. A, 2013, vol. 560, pp. 1-24.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Alexander Polyakov
    • 1
  • Dmitry Gunderov
    • 1
    • 2
  • Vil’ Sitdikov
    • 1
    • 3
  • Ruslan Valiev
    • 1
    • 3
  • Irina Semenova
    • 1
  • Ilchat Sabirov
    • 4
  1. 1.Institute of Physics of Advanced MaterialsUfa State Aviation Technical UniversityUfaRussia
  2. 2.Institute of Molecule and Crystal PhysicsRussian Academy of SciencesUfaRussia
  3. 3.Laboratory for Mechanics of Bulk Nanostructured MaterialsSaint Petersburg State UniversitySaint PetersburgRussia
  4. 4.IMDEA Materials InstituteGetafeSpain

Personalised recommendations