Skip to main content
Log in

Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Ni superalloys are widely used for hot section components in jet engines because they are very resistant to corrosion and maintain reasonably high strength at elevated temperature. However, the repair cost of the parts is high, partly due to the complexities of process variable optimization and control in laser cladding. In particular, optimizing the process parameters by experiments is time-consuming and costly. The microstructure and properties of the metal deposit are significantly influenced by values temperature gradient G and solidification rate R at the weld pool solidification boundary. Optimized values can help to reduce defects and improve properties of laser deposits. Optimization is hindered by the fact that the clad melt pool is hot and small, making in situ measurement of such solidification conditions difficult. Numerical simulation of the laser deposition process is a possible alternative to experimental measurement to obtain values of clad solidification parameters. In this investigation, G and R values at the weld pool solidification boundary were obtained from a three dimensional numerical simulation of laser deposition process and melt pool. The primary dendrite arm spacing and cooling rate of the deposited material were then correlated to these solidification conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ρ :

fluid density (g/cm3)

t :

time (s)

\( \vec{v} \) :

molten metal velocity (cm/s)

\( \dot{m}_{\text{s}} \) :

mass source rate (g/s)

H :

enthalpy (g cm2/s2)

\( \dot{h}_{\text{s}} \) :

enthalpy source rate (g/s3)

σ :

thermal conductivity (g cm/s3/K)

P :

hydrodynamic pressure (g/cm/s2)

μ :

viscosity (g/cm/s)

g :

gravitational acceleration (m/s2)

β :

constant of thermal expansion (K−1)

T m :

melting temperature (K)

\( \vec{p}_{\text{s}} \) :

momentum source rate (g/cm2 s2)

F :

volume fraction of fluid in a cell (0 to 1)

\( \dot{F} \) :

change in F

A :

absorptance

ε 0 :

permittivity of free space (F/m)

ω :

angular frequency of laser radiation (rad/s)

ρ e :

electrical resistivity (Ω cm)

ϕ :

powder catchment efficiency, ratio of S m and S jet

S m :

area of molten pool (cm2)

S jet :

area of substrate struck by powder jet (cm2)

γ o :

surface tension in pure metal (g/s2)

T r :

reference temperature (K)

K s :

surface tension temperature coefficient (g/s2 K)

R g :

gas constant (g cm2/s2 mol K)

S e :

surface excess at saturation (g mol/cm2)

a m :

activity of species m in solution

E :

entropy segregation constant

ΔH 0 :

segregation in enthalpy (kJ/kg mol)

T i :

surface tension transition temperature (K)

T :

temperature (K)

ΔT :

undercooling (K)

ΔT S :

solidus and liquidus temperature difference (K)

ΔT n :

non-equilibrium solidification range (K)

ΔT 0 :

equilibrium solidification range (K)

G :

three dimensional temperature gradient normal to solid–liquid interface (K/cm)

G L :

temperature gradient in liquid region (K/cm)

G x :

x-component of G

G y :

y-component of G

G z :

z-component of G

R :

solidification rate at solid–liquid interface (cm/s)

R b :

laser beam travel speed (cm/s)

Θ:

angle between solid–liquid interface normal and beam travel direction (deg)

L :

constant of harmonic perturbation

D L :

diffusion coefficient in liquid region (m2/s)

Γ:

Gibbs–Thomson coefficient (K m)

K :

partition coefficient

References

  1. O.J. Gregory, M. Amani, I.M. Tougas and A.J. Drehman: J. Am. Ceram. Soc., 2012, vol. 95, pp. 705-710.

    Article  Google Scholar 

  2. M. O. Borel, A. R. Nicoll, H. W. Schlapfer and R. K. Schmid: Surface and Coatings Technology, 1989, vol. 39–40, pp. 117-126.

    Article  Google Scholar 

  3. T.D. Anderson, J.N. DuPont and T. DebRoy: Metall. Mater. Trans. A, 2010, vol. 41, pp. 181-193.

    Article  Google Scholar 

  4. M. Zhong and W. Liu: J. Mech. Eng. Sci., 2010, vol. 224, pp. 1041-1060.

    Article  Google Scholar 

  5. J.D. Majumdar and I. Manna: Laser-Assisted Fabrication of Materials, Springer, New York, 2013, pp. 221-240.

    Book  Google Scholar 

  6. Y.S. Lee, M. Nordin, S.S. Babu, and D.F. Farson: Weld. J., 2014 (in press).

  7. J. DuPont, S. Babu and S. Liu: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3385-3410.

    Article  Google Scholar 

  8. C.R. Heiple and J.R. Roper: Weld. J., 1982, vol. 61, pp. S97-S102.

    Google Scholar 

  9. C.R. Heiple, J.R. Roper, R.T. Stagner and R.J. Aden: Weld. J., 1983, vol. 62, pp. S72-S77.

    Google Scholar 

  10. C. Chan, J. Mazumder and M.M. Chen: J. Met., 1983, vol. 35, pp. 49.

    Google Scholar 

  11. S. Kou and Y.H. Wang: Metall. Trans. A, 1986, vol. 17, pp. 2265-2270.

    Article  Google Scholar 

  12. S. Kou: Weld. J., 2012, vol. 91, pp. 287S-302S.

    Google Scholar 

  13. K.C. Mills, B.J. Keene, R.F. Brooks, and A. Shirali: Philos. Trans. R. Soc., A, 1998, 356(1739): pp. 911–26.

    Article  Google Scholar 

  14. P. Sahoo, T. DebRoy, and M.J. McNallan: Metall. Trans. B, 1988, vol. 19B, pp. 483-491.

    Article  Google Scholar 

  15. P.D. Lee, P.N. Quested and M. McLean: Philos. Trans. R. Soc. London, 1998, vol. 356, pp. 1027-1043.

    Article  Google Scholar 

  16. Y. Su and K.C. Mills: J. Mater. Sci., 2005, vol. 40, pp. 2185-2190.

    Article  Google Scholar 

  17. Y. Zhao, Y. Shi and Y. Lei: Metall. Mater. Trans. B, 2006, vol. 37, pp. 485-493.

    Article  Google Scholar 

  18. C.X. Zhao, C. Kwakernaak, Y. Pan, I.M. Richardson, Z. Saldi, S. Kenjeres and C.R. Kleijn: Acta Mater., 2010, vol. 58, pp. 6345-6357.

    Article  Google Scholar 

  19. S.A. David, S.S. Babu and J.M. Vitek: JOM, 2003, vol. 55, pp. 14-20.

    Article  Google Scholar 

  20. S. Kou: Welding Metallurgy, 2nd ed., John Wiley & Sons, New Jersey, 2003, pp. 156-166.

    Google Scholar 

  21. T. DebRoy and S.A. David: Rev. Mod. Phys., 1995, vol. 67, pp. 85-112.

    Article  Google Scholar 

  22. J. D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75-83.

    Article  Google Scholar 

  23. M. Gaumann, C. Bezencon, P. Canalis and W. Kurz: Acta Mater., 2001, vol. 49, pp. 1051-1062.

    Article  Google Scholar 

  24. T. D. Anderson, J. N. DuPont and T. DebRoy: Acta Mater., 2010, vol. 58, pp. 1441-1454.

    Article  Google Scholar 

  25. Z. Gao and O. A. Ojo: Acta Mater., 2012, vol. 60, pp. 3153-3167.

    Article  Google Scholar 

  26. M. Picasso, C.F. Marsden, J.D. Wagniere, A. Frenk and M. Rappaz: Metall. Mater. Trans. B, 1994, vol. 25, pp. 281-291.

    Article  Google Scholar 

  27. J. Xie, A. Kart, J.A. Rothenflue and W.P. Latham: Journal of Laser Applications, 1997, vol. 9, pp. 77-85.

    Article  Google Scholar 

  28. S. David and J. Vitek: Int. Mater. Rev., 1989, vol. 34, pp. 213-245.

    Article  Google Scholar 

  29. M. Rappaz, S.A. David, J.M. Vitek and L.A. Boatner: Metall. Trans. A, 1989, vol. 20, pp. 1125-1138.

    Article  Google Scholar 

  30. J.M. Vitek: Acta Mater., 2005, vol. 53, pp. 53-67.

    Article  Google Scholar 

  31. W. Kurz and D.J. Fisher: Acta Metall., 1981, vol. 29, pp. 11-20.

    Article  Google Scholar 

  32. R. Trivedi: Metall. Trans. A, 1984, vol. 15, pp. 977-982.

    Article  Google Scholar 

  33. J.E. Spinellia, O.F.L. Rochab and A. Garciaa: Mat. Res., 2006, vol. 9, pp. 51-57.

    Article  Google Scholar 

  34. S. Gao, L. Liu, Y. Xu, C. Yang, J. Zhang and H. Fu: China Foundry, 2012, vol. 9, pp. 159-164.

    Google Scholar 

  35. M.S. Lewandowski and R.A. Overfelt: Acta Mater., 1999, vol. 47, pp. 4695-4710.

    Article  Google Scholar 

  36. W. Wang, P.D. Lee and M. McLean: Acta Mater., 2003, vol. 51, pp. 2971-2987.

    Article  Google Scholar 

  37. R.A. Overfelt and R.E. Taylor: Therm. Conduct., 1996, vol. 23, pp. 538-552.

    Google Scholar 

  38. R. Kovacevic: Welding Processes, InTech, Rijeka, Croatia, 2012, pp. 141-164.

    Book  Google Scholar 

  39. T. Zacharia, S.A. David, J.M. Vitek and T. DebRoy: Weld. J., 1989, vol. 68, pp. S499-S509.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Rolls-Royce Corporation for the funding support and providing laser cladding samples in this work. They also appreciate NSF-I/UCRC: Center for Integrative Materials Joining Science for Energy Applications. The authors express their thanks to J.S. Bader for helpful suggestions and interest in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dave F. Farson.

Additional information

Manuscript submitted October 17, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y., Nordin, M., Babu, S.S. et al. Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition. Metall Mater Trans B 45, 1520–1529 (2014). https://doi.org/10.1007/s11663-014-0054-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0054-7

Keywords

Navigation