Crystallization Characteristics of CaO-Al2O3-Based Mold Flux and Their Effects on In-Mold Performance during High-Aluminum TRIP Steels Continuous Casting

Abstract

Crystallization behaviors of the newly developed lime-alumina-based mold fluxes for high-aluminum transformation induced plasticity (TRIP) steels casting were experimentally studied, and compared with those of lime-silica-based mold fluxes. The effects of mold flux crystallization characteristics on heat transfer and lubrication performance in casting high-Al TRIP steels were also evaluated. The results show that the crystallization temperatures of lime-alumina-based mold fluxes are much lower than those of lime-silica-based mold fluxes. Increasing B2O3 addition suppresses the crystallization of lime-alumina-based mold fluxes, while Na2O exhibits an opposite effect. In continuous cooling of lime-alumina-based mold fluxes with high B2O3 contents and a CaO/Al2O3 ratio of 3.3, faceted cuspidine precipitates first, followed by needle-like CaO·B2O3 or 9CaO·3B2O3·CaF2. In lime-alumina-based mold flux with low B2O3 content (5.4 mass pct) and a CaO/Al2O3 ratio of 1.2, the formation of fine CaF2 takes place first, followed by blocky interconnected CaO·2Al2O3 as the dominant crystalline phase, and rod-like 2CaO·B2O3 precipitates at lower temperature during continuous cooling of the mold flux. In B2O3-free mold flux, blocky interconnected 3CaO·Al2O3 precipitates after CaF2 and 3CaO·2SiO2 formation, and takes up almost the whole crystalline fraction. The casting trials show that the mold heat transfer rate significantly decreases near the meniscus during the continuous casting using lime-alumina-mold fluxes with higher crystallinity, which brings a great reduction of surface depressions on cast slabs. However, excessive crystallinity of mold flux causes poor lubrication between mold and solidifying steel shell, which induces various defects such as drag marks on cast slab. Among the studied mold fluxes, lime-alumina-based mold fluxes with higher B2O3 contents and a CaO/Al2O3 ratio of 3.3 show comparatively improved performance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    B. Sauerhammer, D. Senk, E. Schmidt, M. Safi, M. Spiegel, and S. Sridhar: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 503 512.

    Article  Google Scholar 

  2. 2.

    M. Gomez, C.I. Garcia, and A.J. Deardo: ISIJ Int., 2010, vol. 50, pp. 139 146.

    Article  Google Scholar 

  3. 3.

    D.W. Suh, S.J. Park, C.S. Oh, and S.J. Kim: Scripta Mater., 2007, vol. 57, pp. 1097 1100.

    Article  Google Scholar 

  4. 4.

    M.D. Meyer, D. Vanderschueren, and B.C.De Cooman: ISIJ Int., 1999, vol. 39, pp. 813 822.

    Article  Google Scholar 

  5. 5.

    T.L. Baum, R.J. Fruehan, and S. Sridhar: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 287 297.

    Article  Google Scholar 

  6. 6.

    P. J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. Humbeeck, and F. Delannay: ISIJ Int., 2001, vol. 41, pp. 1068 1074.

    Article  Google Scholar 

  7. 7.

    J.J. Becker, M.A. Madden, T.T. Natarajan, T.J. Piccone, E.J. Serrano, S.R. Story, S.C. Ecklund-Baker, I.A. Nickerson, and W.K. Schlichting: AISTech 2005 Conf. Proc., vol. II, Association for Iron & Steel Technology, Charlotte, NC, 2005, pp. 99–106.

  8. 8.

    S. Street, K. James, N. Minor, A. Roelant, and J. Tremp: Iron Steel Technol., 2008, vol. 5, pp. 38 49.

    Google Scholar 

  9. 9.

    K. Blazek, H.B. Yin, G. Skoczylas, M. McClymonds, and M. Frazee: Iron Steel Technol., 2011, vol. 8, pp. 232 240.

    Google Scholar 

  10. 10.

    W.L. Wang, K. Blazek, and A. Cramb: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 66 74.

    Article  Google Scholar 

  11. 11.

    J.W. Cho, K. Blazek, M. Frazee, H.B. Yin, J.H. Park, and S.W. Moon: ISIJ Int., 2013, vol. 53, pp. 62 70.

    Article  Google Scholar 

  12. 12.

    T. Wu, Q. Wang, S. He, J. Xu, X. Long, and Y. Lu: Steel Res. Int., 2012, vol. 83, pp. 1194 1202.

    Article  Google Scholar 

  13. 13.

    K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray: Ironmaking Steelmaking, 2005, vol. 32, pp. 26 34.

    Article  Google Scholar 

  14. 14.

    Y. Kashiwaya, C.E. Cicutti, and A.W. Cramb: ISIJ Int., 1998, vol. 38, pp. 357 365.

    Article  Google Scholar 

  15. 15.

    H. Liu, G. Wen, and P. Tang: ISIJ Int., 2009, vol. 49, pp. 843 850.

    Article  Google Scholar 

  16. 16.

    L. Zhou, W. Wang, F. Ma, J. Li, J. Wei, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 354 362.

    Article  Google Scholar 

  17. 17.

    J. Li, W. Wang, J. Wei, D. Huang, and H. Matsuura: ISIJ Int., 2012, vol. 52, pp. 2220 2225.

    Article  Google Scholar 

  18. 18.

    B. Lu, W. Wang, J. Li, H. Zhao, and D. Huang: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 365 377.

    Article  Google Scholar 

  19. 19.

    L. Zhou, W. Wang, D. Huang, J. Wei, and J. Li: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 925 936.

    Article  Google Scholar 

  20. 20.

    L. Zhou, W. Wang, R. Liu, and B.G. Thomas: Metall. Mater. Trans. B, 2013, vol. 44B, 1264 1279.

    Article  Google Scholar 

  21. 21.

    Z. Hao, W. Chen, and C. Lippold: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 805 812.

    Article  Google Scholar 

  22. 22.

    T. Watanabe, H. Hashimoto, M. Hayashi, and K. Nagata: ISIJ Int., 2008, vol. 48, pp. 925 933.

    Article  Google Scholar 

  23. 23.

    K. Tsutsumti. T. Nagasaka, and M. Hino: ISIJ Int., 1999, vol. 39, pp. 1150-1159.

    Article  Google Scholar 

  24. 24.

    Z.T. Zhang, G.H. Wen, J.L. Liao, and S. Sridhar: Steel Res. Int., 2010, vol. 81, pp. 516 528.

    Article  Google Scholar 

  25. 25.

    H.G. Ryu, Z.T. Zhang, J.W. Cho, G.H. Wen, and S. Sridhar: ISIJ Int., 2010, vol. 50, pp. 1142 1150.

    Article  Google Scholar 

  26. 26.

    M. Hanao: ISIJ Int., 2013, vol. 53, pp. 648 654.

    Article  Google Scholar 

  27. 27.

    M.D. Seo, C.B. Shi, J.W. Cho, and S.H. Kim: Unpublished research.

  28. 28.

    H. Nakada and K. Nagata: ISIJ Int., 2006, vol. 46, pp. 441 449.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express sincere thanks to Mr. Seung-ho Shin and Mr. Min-su Kim of Graduate Institute of Ferrous Technology, POSTECH for their help in preparing mold flux samples. This work was financially supported by the Global Excellent Technology Innovation (Grant No. 10045029) funded by the Ministry of Trade, Industry & Energy (MOTIE) of Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jung-Wook Cho.

Additional information

Manuscript submitted December 9, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shi, C., Seo, M., Cho, J. et al. Crystallization Characteristics of CaO-Al2O3-Based Mold Flux and Their Effects on In-Mold Performance during High-Aluminum TRIP Steels Continuous Casting. Metall Mater Trans B 45, 1081–1097 (2014). https://doi.org/10.1007/s11663-014-0034-y

Download citation

Keywords

  • Differential Scanning Calorimetry
  • CaF2
  • Differential Scanning Calorimetry Curve
  • Mold Flux
  • Differential Scanning Calorimetry Measurement