Skip to main content
Log in

Removal of Lead Hydroxides Complexes from Solutions Formed in Silver/Gold: Cyanidation Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The presence of lead hydroxides in “pregnant cyanide solution” decreases the quality of the Dore obtained in the recovery processes of gold and silver, so it is convenient to remove them. The adsorbent capacity of the low cost cow bone powder was investigated for the removal of lead ions from a solution of lead hydroxide complexes at different initial metal ion concentrations (10 to 50 mg/L), and reaction time. Experiments were carried out in batches. The maximum sorption capacity of lead determined by the Langmuir model was found to be 126.58 mg/g, and the separation factor R L was between 0 and 1, indicating a significant affinity of bone for lead. Experimental data follow pseudo-second order kinetics suggesting chemisorption. It is concluded that cow bone powder can be successfully used for the removal of lead ions, and improves the quality of the silver–gold cyanides precipitate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Habashi: C.I.M. Bull., 1987, vol. 80, pp. 108–14.

    Google Scholar 

  2. K.B. Hall: World Min., 1974, vol. 27, pp. 44–9.

    Google Scholar 

  3. J.E. Hoffmann: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 431–39.

    Article  Google Scholar 

  4. J.R. Parga, J.L. Valenzuela, and F. Cepeda: J. Met., 2007, vol. 10, pp. 43–7.

    Google Scholar 

  5. I. Rehman, and W. Bonfield: J. Mater. Sci. Mater. Med., 1997, vol. 8, pp. 1–4.

    Article  Google Scholar 

  6. S. Rayanaud, E. Champion, D. Bernache-Assollant, and P. Thomas: Characterization and thermal stability of powders Biomaterials, 2002, vol. 23, pp. 1065–72.

  7. J.D. Miller, R.Y. Wan, and J.R. Parga: Hydrometallurgy, 1990, vol. 24, pp. 373–92.

    Article  Google Scholar 

  8. V.S. Bagotsky: Fundamentals of Electrochemistry, 2nd ed., Wiley, Hoboken, NJ, 2006, p. 44.

  9. G. Lapidus: Hydrometallurgy, 1995, vol. 39, pp. 251–63.

    Article  Google Scholar 

  10. S. Jin, O. May, E. Ghali, and G. Deschenes: in Proceedings of Third International Conference on Hydrometallurgy, ICHM’98, Y. Xianwan, C. Qiyuan, and H. Aiping, eds., International Academic Publishers, Beijing, China, 1998, pp. 666–79.

  11. L. Deng, Y. Su, H. Su, X. Wang, and X. Zhu: J. Hazard. Mater., 2007, vol. 143, pp. 220–25.

    Article  Google Scholar 

  12. A. Gunay, E. Arslankaya, and I. Tosun: J. Hazard. Mater., 2007, vol. 146, pp. 362–71.

    Article  Google Scholar 

  13. I.J. Alinnor: Fuel, 2007, vol. 86, pp. 853–57.

    Article  Google Scholar 

  14. Q. Li, J. Zhai, W. Zhang, M. Wang, and J. Zhou: J. Hazard. Mater., 2007, vol. 141, pp. 163–67.

    Article  Google Scholar 

  15. V.O. Njoku, A.A. Ayuk, E.E. Ejike, E.E. Oguzie, C.E. Duru, and O.S. Bello: Aust. J. Basic Appl. Sci., 2011, vol. 5, pp. 101–10.

  16. E.A. Oluyemi, A.F. Adeyemi, and I.O. Olabanji: Res. J. Eng. Appl. Sci., 2012, vol. 1, pp. 308–13.

  17. A. Sari, M. Tuzen, D. Citak, and M. Soylak: J. Hazard. Mater., 2007, vol. 148, pp. 387–94.

    Article  Google Scholar 

  18. M. Rahbari, and A.S. Goharrizi: Water Environ Res., 2009, vol. 81, pp. 598–607.

    Article  Google Scholar 

  19. Y.H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, and B. Wei: Chem. Phys. Lett., 2002, vol. 357, pp. 263–66.

    Article  Google Scholar 

  20. A.G. Leyva, J. Marrero, P. Smichwoski, and D. Cicerone: J. Environ. Sci. Technol., 2001, vol. 35, pp. 3669–75.

    Article  Google Scholar 

  21. Z.H. Cheng, A. Yasukawa, K. Kandori, and T. Ishikawa: Langmuir, 1998, vol. 14, pp. 6681–86.

    Article  Google Scholar 

  22. D.S. Soejoko, and M.O. Tija: J. Mater. Sci., 2003, vol. 38, pp. 2087–93.

    Article  Google Scholar 

  23. N.A.M. Barakat, K.A. Khalil, F.A. Sheikh, A.M. Omran, B. Gaihre, S.M. Khil, and H.Y. Kim: Mater. Sci. Eng., 2008, vol. C 28, pp. 1381–87.

    Article  Google Scholar 

  24. K.R. Hall, L.C. Eagleton, A. Acrivos, and T. Vermeulen: Ind. Eng. Chem. Fundam., 1966, vol. 5, pp. 212–23.

    Article  Google Scholar 

  25. R.F.P.M. Moreira, M.G. Peruch, and N.C. Kuhnen: Braz. J. Chem. Eng., 1998, vol. 15. doi:10.1590/S0104-66321997000300009.

  26. M. Machida, R. Yamazaki, M. Aikawa, and H. Tatsumoto: Sep. Purif. Technol., 2005, vol. 46, pp. 88–94.

    Article  Google Scholar 

  27. U. Ulusoy, and S. Simsek: J. Hazard. Mater., 2005, vol. 127, pp. 163–71.

    Article  Google Scholar 

  28. Y. Bulut, and Z. Baysal: J. Environ. Manage., 2005, vol. 78, pp. 107–13.

    Article  Google Scholar 

  29. M. Mouflih, A. Aklil, and S. Sebti: J. Hazard. Mater., 2005, vol. 119, pp. 183–88.

    Article  Google Scholar 

  30. S.H. Jang, B.G. Min, Y.G. Jeong, W.S. Lyoo, and S.C. Lee: J. Hazard. Mater., 2008, vol. 152, pp. 1285–92.

    Article  Google Scholar 

  31. S. Lagergren: Handlingar., 1898, vol. 24, pp. 1–34.

    Google Scholar 

  32. Y.S. Ho, and G. McKay: Process Biochem., 1999, vol. 34, pp. 451–65.

    Article  Google Scholar 

  33. L. Martha, H. Figueroa, and B. Limon: Engineerings, 2008, vol. 41, pp. 24–31.

    Google Scholar 

  34. Z. Z. Chowdhury, S.M. Zain, and A.K. Rashid: E-J. Chem., 2011, vol. 8, pp. 333–39.

    Article  Google Scholar 

  35. K. Chojnacka, and I. Michalak: Glob. NEST J., 2009, vol. 11, pp. 205–17.

    Google Scholar 

  36. J. Cha, M. Cui, M. Jang, S.H. Cho, D.H. Moon, and J. Khim: Environ. Geochem. Health, 2011, vol. 33, pp. 81–9.

    Article  Google Scholar 

  37. D.H. Moon, K.H. Cheong, J. Khim, M. Wazne, S. Hyun, J.-H. Park, Y.-Y. Chang, and Y.S. Ok: Chemosphere, 2013, vol. 91, pp. 1349–54.

    Article  Google Scholar 

  38. S. Saxena, M. Prasad, and S.F.D′ Souza: Ind. Eng. Chem. Res., 2006, vol. 45, pp. 9122–28.

  39. P.K. Chaturvedi, C.S. Seth, and V. Misra: Chemosphere, 2006, vol. 64, pp. 1109–14.

  40. K. Chojnacka: Chemosphere, 2004, vol. 59, pp. 315–20.

    Article  Google Scholar 

  41. N.J. Coleman, D.S. Brassington, A. Raza, and A.P. Mendham: Waste Manage., 2006, vol. 26, pp. 260–67.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge support of this project to Minera William in Mexico, the National Council of Science and Technology (CONACYT), Directorate General of Higher Education Technology (DEGEST) of Mexico, and Lamar University Materials Instrumental Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Jewel Gomes.

Additional information

Manuscript submitted January 31, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parga, J.R., Martinez, R.F., Moreno, H. et al. Removal of Lead Hydroxides Complexes from Solutions Formed in Silver/Gold: Cyanidation Process. Metall Mater Trans B 45, 743–751 (2014). https://doi.org/10.1007/s11663-013-9962-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9962-1

Keywords

Navigation