Skip to main content
Log in

Simulation of Flow Fluid in the BOF Steelmaking Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The basic oxygen furnace (BOF) smelting process consists of different chemical reactions among oxygen, slag, and molten steel, which engenders a vigorous stirring process to promote slagging, dephosphorization, decarbonization, heating of molten steel, and homogenization of steel composition and temperature. Therefore, the oxygen flow rate, lance height, and slag thickness vary during the smelting process. This simulation demonstrated a three-dimensional mathematical model for a 100 t converter applying four-hole supersonic oxygen lance and simulated the effect of oxygen flow rate, lance height, and slag thickness on the flow of molten bath. It is found that as the oxygen flow rate increases, the impact area and depth increases, which increases the flow speed in the molten bath and decreases the area of dead zone. Low oxygen lance height benefits the increase of impact depth and accelerates the flow speed of liquid steel on the surface of the bath, while high oxygen lance height benefits the increase of impact area, thereafter enhances the uniform distribution of radial velocity in the molten steel and increases the flow velocity of molten steel at the bottom of furnace hearth. As the slag thickness increases, the diameter of impinging cavity on the slag and steel surface decreases. The radial velocity of liquid steel in the molten bath is well distributed when the jet flow impact on the slag layer increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K.I. Naito, Y. Ogawa, T. Inomoto, S. Kitamura, and M. Yano: ISIJ Int., 2000, vol. 40, pp. 23-30.

    Article  CAS  Google Scholar 

  2. B. Deo, A. Krarmcheti, A. Paul, P. Singh, and R.P. Chhabra: ISIJ Int., 1996, vol. 36, pp. 658-66.

    Article  CAS  Google Scholar 

  3. Z.F. Yuan, X. Yang, Z.X. Lu, J.N. Huang, Y.F. Pan, and E.X. Ma: J. Iron Steel Res. Int., 2007, vol. 14, pp. 1-5.

    Google Scholar 

  4. Y. Higuchi and Y. Tago: ISIJ Int., 2003, vol. 43, pp. 1410-14.

    Article  CAS  Google Scholar 

  5. R. Sambasivam, S.N. Lenka, F. Durst, M. Bock, S. Chandra, and S.K. Ajmani: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 45-53.

    Article  CAS  Google Scholar 

  6. Y. Higuchi and Y. Tago: ISIJ Int., 2001, vol. 41, pp. 1454-59.

    Article  CAS  Google Scholar 

  7. D.Y. Medina, M.A. Barron, and I. Hilerio: ASME International Mechanical Engineering Congress and Exposition, Seattle, WA, 2007.

  8. M.A. Barron, D.Y. Medina, and I. Hilerio: 2009 International Conference on Modeling, Simulation & Visualization Methods, Las Vegas, NV, 2009.

  9. N. Asahara, K.I. Naito, I. Kitagawa, M. Matsuo, M. Kumakura, and M. Iwasaki: Steel Res. Int., 2011, vol. 82, pp. 587-94.

    Article  CAS  Google Scholar 

  10. W.J. Wang, Z.F. Yuan, H. Matsuura, H.X. Zhao, C. Dai, and F. Tsukihashi: ISIJ Int., 2010, vol. 50, pp. 491-500.

    Article  CAS  Google Scholar 

  11. H.J. Odenthal, U. Falkenreck, and J. Schlüter: ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, 2006.

  12. H.J. Odenthal, W.H. Emling, J. Kempken, and J. Schlüter: AISTech 2007 Proceedings, Indianapolis, IN, 2007.

  13. T. Kumagai and M. Iguchi: ISIJ Int., 2001, vol. 41, pp. S52-S55.

    Article  CAS  Google Scholar 

  14. K.C. Chou, U.B. Pal, and R.G. Reddy: ISIJ Int., 1993, vol. 33, pp. 862-68.

    Article  CAS  Google Scholar 

  15. N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ Int., 2001, vol. 51, pp. 1102-09.

    Article  Google Scholar 

  16. S.M. Jung and R.J. Fruehan: ISIJ Int., 2000, vol. 40, pp. 348-55.

    Article  CAS  Google Scholar 

  17. D. Lotun and L. Pilon: ISIJ Int., 2005, vol. 45, pp. 835-40.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Lv.

Additional information

Manuscript submitted December 31, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, M., Zhu, R., Guo, YG. et al. Simulation of Flow Fluid in the BOF Steelmaking Process. Metall Mater Trans B 44, 1560–1571 (2013). https://doi.org/10.1007/s11663-013-9935-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9935-4

Keywords

Navigation