Skip to main content
Log in

Kinetic Study of Europium Oxide Chlorination

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The kinetics of europium oxide (Eu2O3) chlorination using gaseous chlorine as a chlorination agent was studied between 523 K and 1223 K (250 °C and 950 °C). The relative mass change during the chlorination reaction was continuously monitored using a high resolution thermogravimetric system. The starting temperature for the reaction of Eu2O3(s) with chlorine was determined at about 523 K (250 °C) with the formation of solid europium oxychloride (EuOCl). For temperatures above 1123 K (850 °C), the EuOCl(s) is chlorinated producing EuCl3(l). The influence of gaseous flow rate, sample mass, chlorine partial pressure, and temperature on the reaction rate was analyzed. The results showed that for 673 K (400 °C) and temperatures below, the system is under chemical control. Concerning the influence of chlorine partial pressure, it was determined that pressures greater than 50 kPa do not modify the kinetic regime. For the experiment at 673 K (400 °C), it was found that the chlorination rate was proportional to a potential function of the partial pressure of chlorine whose exponent is 0.54. The conversion curves were analyzed with the Johnson–Mehl–Avrami description. Intrinsic activation energy of 115 kJ mol−1 was obtained for the temperature range of 573 K to 673 K (300 °C to 400 °C). Finally, a global rate equation that includes these parameters was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K.A. Gschneidner and L. Eyring: Handbook on the Physics and Chemistry of Rare Earths, Elsevier, Amsterdam, 1981.

    Google Scholar 

  2. K. Binnemans, P.T. Jones, B. Blanpain, T.V. Gerven, Y. Yang, A. Walton, and M.J. Buchert: J. Clean. Prod., 2013, vol. 51, pp. 1–22.

    Article  CAS  Google Scholar 

  3. O.P. Dimitriev and V.V. Kislyuk: Chem. Phys. Lett., 2003, vol. 377, pp. 149-155.

    Article  CAS  Google Scholar 

  4. D.M. Considine: Chemical and Process Technology Encyclopedia, McGraw Hill, New York, 1974, pp. 961-962.

    Google Scholar 

  5. R.C. Weast and M.J. Astle: CRC Handbook of Chemistry and Physics, 63rd edn, CRC Press, Boca Raton, FL, 1983, pp. 16.

    Google Scholar 

  6. K. Kuriki, Y. Koike, Y. Okamoto: Chem. Rev., 2002, vol. 102, pp. 23472356.

    Article  CAS  Google Scholar 

  7. W. Zhu, Q. Jiang, Z. Lu, X. Wei, M. Xie, D. Zou, T. Tsutsui: Synthetic Metals, 2000, vol. 111112, pp. 445447.

    Article  Google Scholar 

  8. G.E. Khalil, K. Lau, G.D. Phelan, B. Carlson, M. Gouterman, J.B. Callis, L.R. Dalton: Review of Scientific Instruments, 2004, vol. 75, pp. 192206.

    Article  CAS  Google Scholar 

  9. F.B. Wu, S.Q. Han, C. Zhang, Y.F. He: Analytical Chemistry, 2002, vol. 74, pp. 58825889.

    Article  CAS  Google Scholar 

  10. B. Jezowska-Trzebiatowska, S. Kopacz, T. Mikulski: The Rare ElementsOccurrence and Technology; Elsevier, Amsterdam, 1990, pp. 97.

    Google Scholar 

  11. M. Gimenes and H. Oliveira: Metall. Mater. Trans. B, 2001, vol. 32, pp. 1007-1013.

    Article  CAS  Google Scholar 

  12. J.P. Gaviría, L.G. Navarro, A.E. Bohé: J. Phys. Chem. A, 2012, vol. 116, pp. 2062-2070.

    Article  Google Scholar 

  13. G. Adachi, K. Shinozaki, Y. Hirashima, K. Machida: J. Less-Common Met., 1991, vol. 169, L1.

    Article  CAS  Google Scholar 

  14. G. Adachi, K. Murase, S. Shinozaki, and K. Machida: Chem. Lett., 1992, pp. 511.

  15. Y-H. Sun, Z-C. Wang, L. Wuo: J. Alloys and Comp., 1998, vol. 269, pp. 88-91.

    Article  CAS  Google Scholar 

  16. Y-H. Sun, Z-C. Wang, L. Wuo: J. Rare Earths, 1999, vol. 17, pp. 178.

    Google Scholar 

  17. D.R. Lide: Handbook of Chemistry and Physics, 85nd edn., CRC Press Inc., FL, 2005.

    Google Scholar 

  18. HSC 6.12, Chemistry for Windows, Outokumpu Research, Oy, Pori, Finland, 2007.

  19. M.V. Bosco, G.G. Fouga, A.E. Bohé: Thermochim. Acta, 2012, vol. 540, pp. 98-106.

    Article  CAS  Google Scholar 

  20. Joint Committee for Powder Diffraction Standards, Powder Diffraction File, International Center for Diffraction Data, Swarthmore, PA, 1996.

    Google Scholar 

  21. S.K. Kim: Ph.D. Thesis, University of Utah, 1981.

  22. J. Szekely, J.W. Evans, H.Y. Sohn: Gas-Solid Reactions; Academic Press, New York, 1976.

    Google Scholar 

  23. A.W. Hills: Metall. Trans. B, 1978, vol. B9, pp. 121-128.

    Article  CAS  Google Scholar 

  24. W.E. Ranz, W.R.Jr. Marshall: Chem. Eng. Prog., 1952, vol. 48, pp. 141-146.

    Google Scholar 

  25. G.H. Geiger, D.R. Poirier: Transport Phenomena in Metallurgy, Addison-Wesley, Massachusetts, 1973, pp. 7-13.

    Google Scholar 

  26. G. Hakvoort: Thermochim. Acta, 1994, vol. 233, pp. 63-73.

    Article  CAS  Google Scholar 

  27. J.P. Gaviría and A.E. Bohé: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 45-53.

    Article  Google Scholar 

  28. J.P. Gaviría, G.G. Fouga, A.E. Bohé: Thermochim. Acta, 2011, vol. 517, pp. 24-33.

    Article  Google Scholar 

  29. J.H. Flynn: J. Therm. Anal., 1988, vol. 34, pp. 367-381.

    Article  CAS  Google Scholar 

  30. S. Vyazovkin: Thermochim. Acta, 2000, vol. 355, pp. 155-163.

    Article  CAS  Google Scholar 

  31. M. Avrami: J. Chem. Phys., 1939, vol. 7(12), pp. 1103-1113.

    Article  CAS  Google Scholar 

  32. M. Avrami: J. Chem. Phys., 1940, vol. 8(2), pp. 212-224.

    Article  CAS  Google Scholar 

  33. M. Avrami: J. Chem. Phys., 1941, vol. 9(2), pp. 177-184.

    Article  CAS  Google Scholar 

  34. W.A. Johnson, R.F. Mehl: Trans. Am. Inst. Min. Metall. Engs., 1939, vol. 135, pp. 416-427.

    Google Scholar 

  35. A.T.W. Kempen, F. Sommer, E.J. Mittemeijer: J. Mater. Sci., 2002, vol. 37(2), pp. 1321-1332.

    Article  CAS  Google Scholar 

  36. M.R. Esquivel, A.E. Bohé, D.M. Pasquevich: J. Mat. Process. Techn., 2005, vol. 170, pp. 304-309.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Comahue, and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico J. Pomiro.

Additional information

Manuscript submitted February 25, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pomiro, F.J., Fouga, G.G. & Bohé, A.E. Kinetic Study of Europium Oxide Chlorination. Metall Mater Trans B 44, 1509–1519 (2013). https://doi.org/10.1007/s11663-013-9931-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9931-8

Keywords

Navigation