Skip to main content
Log in

A Statistical Approach for Estimation of Fusion Behavior of Alumino-Thermic Ferrochrome Slags

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Effects of simultaneous variations of Al2O3/CaO ratio, and MgO and CaF2 contents, on the fusion behavior of synthetic alumino-thermic ferrochrome slags are systematically measured using a hot-stage-microscope in accordance with German standard 51730. Empirical equations are developed for the prediction of the softening temperature (ST), liquidus/hemispherical temperature (HT), and flow temperature (FT), in terms of aforementioned variables using Factorial Design Technique. To verify the predicted equations, further groups of synthetic slags are prepared in the laboratory using pure oxides, and the characteristic temperatures of these slags are measured in the same manner using hot-stage microscope. It is observed that within the range of variables examined, equations developed render the best fit for HT, the next best fit for FT, and somewhat good fit for ST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The short form for softening temperature determined experimentally is denoted as ST and by factorial design technique as ρ ST . Similar notations are followed for other characteristic temperatures.

References

  1. U.K. Mohanty and R.C. Behera: ISIJ Int., 2003, vol. 43, no. 12, pp. 1875-81.

    Article  CAS  Google Scholar 

  2. S. Dash, N. Mohanty, U.K. Mohanty and S. Sarkar: Open J. Met., 2012, 2, pp. 42-47.

    Article  Google Scholar 

  3. U.K. Mohanty: PhD Dissertation, R.E. College, Rourkela, India, 2000.

  4. V.K. Gupta and V. Sheshadri: Trans. Indian Inst. Met. 1973, vol. 26, pp. 55-64.

    CAS  Google Scholar 

  5. R.N. Singh: Steel India, 1984, vol. 7, pp. 73-83.

    CAS  Google Scholar 

  6. Lesathala: Properties of Blast Furnace Slags, Metallurgia, Moscow, 1958.

  7. H.A. Fine and S. Arac: Iron Making Steel Making, 1980, vol. 7, no. 9, pp. 160-66.

    CAS  Google Scholar 

  8. K. Datta, P.K. Sen, S.S. Gupta and A. Chatterjee: Steel Res., 1993, vol. 64, no. 5, pp. 232-39.

    CAS  Google Scholar 

  9. R.H. Eric, A.A. Heija and W. Stange: Miner. Eng., 1991, vol. 4, no. 12, pp. 1315-52.

    Article  CAS  Google Scholar 

  10. G.E.P. Box, W.G. Hunter, and J.S. Hunter: Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. New York: Wiley, 1978.

    Google Scholar 

  11. R.V. Lenth: Technometrics, 1989, vol. 31, pp. 469-73.

    Article  Google Scholar 

  12. D.C. Montgomery: Design and Analysis of Experiments, 3rd ed., Wiley, 1991.

    Google Scholar 

  13. V.N. Nair and D. Pregibon: Technometrics, 1988, vol. 30, pp. 247-57.

    Article  Google Scholar 

  14. G. Pan: Technometrics, 1999, vol. 41, pp. 313–26.

    Article  Google Scholar 

  15. R.L. Plackett and J.P. Burman: Biometrika, 1946, vol. 34, pp. 255–72.

    Google Scholar 

  16. S.A. Abdul-Wahab and J. Abdo: Appl. Therm. Eng., 2007, vol. 27, pp. 41321.

    Article  CAS  Google Scholar 

  17. N.M.S. Kaminari, M.J.J.S. Ponte and A.C. Neto: Chem. Eng. J., 2005, vol. 105, pp. 11115.

    Article  CAS  Google Scholar 

  18. R. Gottipati and S. Mishra: Chem. Eng. J., 2010, vol. 160, pp. 99107.

    Article  CAS  Google Scholar 

  19. R.J. Martin, G. Jones and J.A. Eccleston: J. Stat. Plan. Inferenceence, 1998, vol. 66, no. 2, pp. 36384.

    Article  Google Scholar 

  20. D.C. Coster: Comput. Stat. Data Anal., 1993, vol. 16, no. 3, pp. 32536.

    Article  Google Scholar 

  21. P.E. Greenwood and M.S. Nikulin: A Guide to Chi Squared Testing, Wiley, New York, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sahoo.

Additional information

Manuscript submitted September 27, 2012.

Appendix

Appendix

Calculation of Variance for ST

$$ \begin{gathered}{{\text{Response}},\; \rho = f\left( {R_{a} , M_{b} , C_{c} } \right)\;{\text{where}}\; a = b = c = 1, 2} \hfill \\ {{\text{and}}\;\rho = \rho_{R1} \;{\text{for}}\;a = 1,\;b = c = 1, 2} \hfill \\ {\rho = \rho_{R2} \;{\text{for}}\;a = 2, b = c = 1, 2} \hfill \\ {\rho = \rho_{M1} \;{\text{for}}\;b = 1, a = c = 1, 2} \hfill \\ {\rho = \rho_{M2} \;{\text{for}}\;b = 2, a = c = 1, 2} \hfill \\ {\rho = \rho_{C1} \;{\text{for}}\;c = 1, a = b = 1, 2} \hfill \\ \rho = \rho_{C2} \;{\text{for}}\;c = 2, a = b = 1, 2 \hfill \\ {{\text{Similarly}},\;\rho = \rho_{R1M1} \;{\text{for}}\;a = 1, b = 1, c = 1, 2} \hfill \\ {\rho = \rho_{R1M2} \;{\text{for}}\;a = 1, b = 2, c = 1, 2 } \hfill \\ {\rho = \rho_{R2M1} \;{\text{for}}\;a = 2, b = 1, c = 1, 2 } \hfill \\ {\rho = \rho_{R2M2} \;{\text{for}}\;a = 2, b = 2, c = 1, 2 } \hfill \\ {\rho = \rho_{M1C1} \;{\text{for}}\;b = 1, c = 1, a = 1, 2 } \hfill \\ {\rho = \rho_{M1C2} \;{\text{for}}\;b = 1, c = 2, a = 1, 2 } \hfill \\ {\rho = \rho_{M2C1} \;{\text{for}}\;b = 2, c = 1, a = 1, 2 } \hfill \\ {\rho = \rho_{M2C2} \;{\text{for}}\;b = 2, c = 2, a = 1, 2 } \hfill \\ {\rho = \rho_{C1R1} \;{\text{for}}\;a = 1, c = 1, b = 1, 2 } \hfill \\ {\rho = \rho_{C2R1} \;{\text{for}}\;a = 1, c = 2, b = 1, 2 } \hfill \\ {\rho = \rho_{C1R2} \;{\text{for}}\;a = 2, c = 1, b = 1, 2 } \hfill \\ {{\text{and}}\; \rho = \rho_{C2R2} \;{\text{for}}\;a = 2, c = 2, b = 1, 2 } \end{gathered} $$
$$ {\text{Correction}}\;{\text{factor}}\; ( {\text{CF) }} = \frac{{(\sum \rho )^{2} }}{8} = 24321825.13\;({\text{see}}\;{\text{Table}}\;{\text{V}}) $$
$$ {\text{Total variance}} = (\Upsigma \rho^{2} ) - CF = 2501.87 $$
$$ {\text{Variance due to}}\;R = \frac{{(\Upsigma \rho_{R1} )^{2} + (\Upsigma \rho_{R2} )^{2} }}{4} - CF = 36.12 $$
$$ {\text{Variance due to }}M = \frac{{(\Upsigma \rho_{M1} )^{2} + (\Upsigma \rho_{M2} )^{2} }}{4} - CF = 1035.12 $$
$$ {\text{Variance due to}}\;C = \frac{{(\Upsigma \rho_{C1} )^{2} + (\Upsigma \rho_{C2} )^{2} }}{4} - CF = 903.13 $$
$$\text{Interaction variance due to} \; R \; \text{and} \; M = \frac{{\left( {\Upsigma \rho_{R1M1} } \right)^{2} + \left( {\Upsigma \rho_{R1M2} } \right)^{2} + \left( {\Upsigma \rho_{R2M1} } \right)^{2} + \left( {\Upsigma \rho_{R2M2} } \right)^{2} }}{2} - \text{Variance due to} \; R - \text{Variance due to}\; M - CF = 325.12$$
$$\text{Interaction variance due to} \;M \;\text{and} \; C = \frac{{\left( {\Upsigma \rho_{M1C1} } \right)^{2} + \left( {\Upsigma \rho_{M1C2} } \right)^{2} + \left( {\Upsigma \rho_{M2C1} } \right)^{2} + \left( {\Upsigma \rho_{M2C2} } \right)^{2} }}{2} - \text{Variance due to} \; M - \text{Variance due to} \; C - CF = 28.13$$
$$ \text{Interaction variance due to} \; C \; \text{and} \;R = \frac{{\left( {\Upsigma \rho_{C1R1} } \right)^{2} + \left( {\Upsigma \rho_{C1R2} } \right)^{2} + \left( {\Upsigma \rho_{C2R1} } \right)^{2} + \left( {\Upsigma \rho_{C2R2} } \right)^{2} }}{2} - \text{Variance due to} \; C - \text{Variance due to} \; R - CF = 171.13$$
$$\text{Residual variance} = \text{Total variance} - \text{Sum of above six variances} = 3.12$$
$$ \text{Variance ratio or Fischer ratio} \left( F \right) = \frac{\text{Variance}}{\text{Residual variance}} $$

In order for a factor to be significant, F should be greater than the value given by Snedecor’s table with respect to the degree of freedom at 90, 95, or 99 pct of confidence.

To calculate relative significance of the three factors R, M, and C, ST [ai] is calculated by averaging the response with signs of R, M, and C.

$$ {\text{So}},\;ST\left[ {ai} \right]\;{\text{for}}\;R = + 2. 1 2 5 $$
$$ ST\left[ {ai} \right]\;{\text{for}}\;M = - 1 1. 3 7 5 $$
$$ ST\left[ {ai} \right]\;{\text{for}}\;C = - 10. 6 2 5 $$
$$ {\text{Softening Temperature}}\;(\rho_{ST} )= a_{0} + a_{1} R + a_{2} M + a_{3} C, $$

where a 0 is the average response values of ST, and (a 1, a 2, a 3) are the ST [ai] values of R, M, and C, respectively.

Hence, \( {\text{Softening Temperature}}\;(\rho_{ST} ) { } = \, 1743.625 + 2.125R - 11.375M - 10.625C \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, S.K., Tiwari, J.N. & Mohanty, U.K. A Statistical Approach for Estimation of Fusion Behavior of Alumino-Thermic Ferrochrome Slags. Metall Mater Trans B 44, 1371–1378 (2013). https://doi.org/10.1007/s11663-013-9927-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9927-4

Keywords

Navigation