Skip to main content
Log in

Online Measurement for Transient Mold Friction Based on the Hydraulic Oscillators of Continuous-Casting Mold

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The interaction of the strand shell surface and mold copper plates has significant effects on the slab surface quality and casting productivity. This article focuses on developing a reliable approach to measure the transient friction force between the slab and the mold for the purpose of the investigation of lubrication and friction behavior inside a mold. This method is presented to monitor transient mold frictions for the slab continuous caster equipped with hydraulic oscillators. A mathematical model is also developed to calculate the empty working force of the no casting state, and a new algorithm, based on the particle swarm optimization, is proposed to predict the dynamic characteristic parameters of mold oscillation. The results have shown that the method has a sufficient sensitivity to variation, especially to the periodical variation of the mold friction, and it has been identified that the transient mold friction can be used as an effective index with regard to detecting mold oscillation and optimizing the casting parameters for process control. It may lay the practical foundation for the online detection of powder lubrication and the visualization of the continuous-casting mold process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.H. Emling: Ironmaker Steelmaker, 1994, vol. 21, no. 7, pp. 47-8.

    Google Scholar 

  2. B.G. Thomas, M.S. Jenkins, and R.B. Mahapatra: Ironmaking Steelmaking, 2004, vol. 31, no. 6, pp. 485-94.

    Article  CAS  Google Scholar 

  3. M. Suzuki, H. Mizukami, T. Kitagawa, K. Kawakami, S. Uchida, and Y. Komatsu: ISIJ Int., 1991, vol. 31, no. 3, pp. 254-61.

    Article  Google Scholar 

  4. S. Chandra, I.V. Samarasekera, J.K. Brimacombe, I.A. Bakshi, and B.N. Walker: Ironmaking Steelmaking, 1996, vol. 23, no. 6, pp. 512-21.

    CAS  Google Scholar 

  5. M. Yao and D.C. Fang: Ironmaking Steelmaking, 1996, vol. 23, no. 6, pp. 522-7.

    CAS  Google Scholar 

  6. J.L. Brendzy, I.A. Bakshi, I.V. Samarasekera, and J.K. Brimacombe: Ironmaking Steelmaking, 1993, vol. 20, no. 1, pp. 63-74.

    CAS  Google Scholar 

  7. I.A. Bakshi, J.L. Brendzy, and N. Walker: Ironmaking Steelmaking, 1993, vol. 20, no. 1, pp. 54-62.

    CAS  Google Scholar 

  8. G.T. Alvarez, J. Ciriza, and J.J. Laraudogoitia: Ironmaking Steelmaking, 2003, vol. 30, no. 5, pp. 353-9.

    Article  Google Scholar 

  9. P.P. Sahoo and S. Basu: ISIJ Int., 2006, vol. 46, no. 2, pp. 219-25.

    Article  CAS  Google Scholar 

  10. P. Valentin, C. Bruch, and A.C. Horn: Steel Res. Int., 2004, vol. 75, no. 10, pp. 666-71.

    CAS  Google Scholar 

  11. X.D. Wang, M. Yao, and X.F. Chen: ISIJ Int., 2006, vol. 46, no. 7, pp. 1047-53.

    Article  CAS  Google Scholar 

  12. J. Watzinger, A. Pesek, N. Huebner, M. Pillwax, and O. Lang: Ironmaking Steelmaking, 2005, vol. 32, no. 3, pp. 208-12.

    Article  CAS  Google Scholar 

  13. J. Kennedy and R. Eberhart: Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, IEEE Service Center, Piscataway, NJ, 1995, pp. 1942–45.

  14. K.H. Lee, S.W. Baek, and K.W. Kim: Int. J. Heat Mass Transf., 2008, vol. 51, nos. 11,12, pp. 2772–83.

  15. H. Qi, H.M. Ruan, H.C. Zhang, Y.M. Wang, and H.P. Tan: Int. J. Therm. Sci., 2007, vol. 46, no. 7, pp. 649-61.

    Article  CAS  Google Scholar 

  16. X.Y. Zang, X.D. Wang, Y. Ma, M. Yao, and L. Zhang: Steel Res. Int., 2008, vol. 79, no. 7, pp. 564-8.

    CAS  Google Scholar 

  17. Y. Ma, X.D. Wang, X.Y. Zang, M. Yao, L. Zhang, and S.H. Ye: Ironmaking Steelmaking, 2008, vol. 35, no. 3, pp. 164-8.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the National Natural Science Foundation of China (51004012). This project was granted financial support from China Postdoctoral Science Foundation (2012M520621/2013T60511). Also, the support of the High Technology Research and Development Program of China (2009AA04Z134) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Yao.

Additional information

Manuscript submitted August 27, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Wang, Z. & Yao, M. Online Measurement for Transient Mold Friction Based on the Hydraulic Oscillators of Continuous-Casting Mold. Metall Mater Trans B 44, 1499–1508 (2013). https://doi.org/10.1007/s11663-013-9919-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9919-4

Keywords

Navigation