Skip to main content

Advertisement

Log in

Mechanical and Thermal Properties of Pulsed Electric Current Sintered (PECS) Cu-Diamond Compacts

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this work, dispersion strengthening of copper by diamonds is explored. In particular, the influence of 50- and 250-nm diamonds at contents of 3 and 6 vol. pct on the mechanical and thermal properties of pulsed electric current sintered (PECS) Cu composites is studied. The composite powders were prepared by mechanical alloying in argon atmosphere using a high-energy vibratory ball mill. The PECS compacts prepared had high density (>97 pct of T.D.) with quite evenly distributed diamonds. The effectiveness of dispersoids in increasing the microhardness was more pronounced at a smaller particle size and larger volume fraction, explained by Hall–Petch and Orowan strengthening models. The microhardness of Cu with 6 and 3 vol. pct nanodiamonds and pure sm-Cu (submicron-sized Cu) was 1.77, 1.46, and 1.02 GPa, respectively. In annealing experiments at 623 K to 873 K (350 °C to 600 °C), the composites with 6 vol. pct dispersoids retained their hardness better than those with less dispersoids or sm-Cu. The coefficient of thermal expansion was lowered when diamonds were added, being the lowest at about 14 × 10−6 K−1 between 473 K and 573 K (200 °C and 300 °C). Good bonding between the copper and diamond was qualitatively demonstrated by nanoindentation. In conclusion, high-quality Cu-diamond composites can be produced by PECS with improved strength and better thermal stability than for sm-Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Tian, P. Liu, K. Song, Y. Li, Y. Liu, F. Ren and J. Su: Mater. Sci. Eng. A, 2006, vol. 435436A, pp. 705–10.

    Article  Google Scholar 

  2. J.R. Groza: J. Mat. Eng. Perf., 1992, Vol. 1, pp. 113-21.

    Article  Google Scholar 

  3. J.R. Groza and J.C. Gibeling: Mater. Sci. Eng. A, 1993, Vol. 171A, pp. 115-25.

    Article  Google Scholar 

  4. K. Yoshida and H. Morigami: Microel. Reliab., 2004, Vol. 44, pp. 303-8.

    Article  Google Scholar 

  5. S.V. Kidalov and F.M. Shakhov: Materias, 2009, Vol.2, pp. 2467-95.

    Article  Google Scholar 

  6. J. He, N. Zhao, C. Shi, X. Du, J. Li and P. Nash: Mater. Sci. Eng. A, 2008, Vol. 490A, pp. 293-9.

    Article  Google Scholar 

  7. Th. Schubert, B. Trindade, T. Weiβgärber and B. Kieback: Mater. Sci. Eng. A, 2008, Vol. 475A, pp. 39-44.

    Article  Google Scholar 

  8. K.A. Weidenmann, R. Tavangar and L. Weber: Mater. Sci. Eng. A, 2009, Vol. 523A, pp. 226-34.

    Article  Google Scholar 

  9. D. Nunes, V. Livramento, N. Shohoji, H. Fernandes, C. Silva, J.B. Correia and P.A. Carvalho: Phys. Scr., 2011, Vol. T145, 014069.

    Article  Google Scholar 

  10. K. Hanada, K. Yamamoto, T. Taguchi, E. Ōsawa, M. Inakuma, V. Livramento, J.B. Correia and N. Shohoji: Diamond Rel. Mater., 2007, Vol.16, pp. 2054-7.

    Article  Google Scholar 

  11. Y. Xia, Y-Q. Song, C-G. Lin, S. Cui, and Z-Z. Fang, Trans. Nonferrous Met. Soc. China, 2009, Vol. 19, pp. 1161-6.

    Article  Google Scholar 

  12. L. Weber and R. Tavangar: Scr. Mater., 2007, Vol. 57, pp. 988-91.

    Article  Google Scholar 

  13. D. Nunes, J.B. Correia, P.A. Carvalho, N. Shohoji, H. Fernandes, C. Silva, L.C. Alves, K. Hanada and E. Ōsawa: Fusion Eng. Des., 2011, Vol. 86, pp. 2589-92.

    Article  Google Scholar 

  14. R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao: Mater. Sci. Eng. R, 2009, Vol. 63R, pp. 127- 287.

    Article  Google Scholar 

  15. K. Chu, Z. Liu, C. Jia, H. Chen, X. Liang, W. Gao, W. Tian and H. Guo: J. Alloys Compd., 2010, Vol. 490, pp. 453-8.

    Article  Google Scholar 

  16. Y. Zhang, H.L. Zhang, J.H. Wu and X.T. Wang: Scr. Mater., 2011, Vol. 65, pp. 1097-100.

    Article  Google Scholar 

  17. K. Yamamoto, T. Taguchi, K. Hanada, E. Ōsawa, M. Inakuma, V. Livramento, J.B. Correia and N. Shohoji: Diamond Rel. Mater., 2007, Vol. 16, pp. 2058-62.

    Article  Google Scholar 

  18. H. Couvy, D. Lahiri, J. Chen, A. Agarwal and G. Sen: Scr. Mater., 2011, Vol. 64, pp. 1019-22.

    Article  Google Scholar 

  19. I.B. Yanchuk, M.Ya. Valakh, A.Ya. Vul, V.G. Golubev, S.A. Grudinkin, N.A. Feoktistov, A. Richter and B. Wolf: Diamond Rel. Mater., 2004, Vol. 13, pp. 266-9.

    Article  Google Scholar 

  20. A. Richter, R. Ries, R. Smith, M. Henkel and B. Wolf: Diamond Rel. Mater., 2000, Vol. 9, pp. 170-184.

    Article  Google Scholar 

  21. R. Ritasalo, M.E. Cura, X.W. Liu, O. Söderberg, T. Ritvonen and S-P. Hannula: Mater. Sci Eng. A, 2010, Vol. 527A, pp. 2733-7.

    Article  Google Scholar 

  22. S.J. Hwang: J. Alloys Comp., 2011, Vol. 509, pp. 2355-9.

    Article  Google Scholar 

  23. E.O. Hall: Proc. Phys. Soc. B, 1952, Vol. 64B, pp. 747-53.

    Google Scholar 

  24. N.J. Petch: J. Iron Steel Inst., 1953, Vol. 174, pp. 25-8.

    Google Scholar 

  25. U.F. Kocks: Mater. Sci. Eng., 1977, Vol. 27, pp. 291-8.

    Article  Google Scholar 

  26. J. Lee, J.Y. Jung, E-S. Lee, W.J. Park, S. Ahn and N.J. Kim: Mater. Sci. Eng. A, 2000, Vol. 277A, pp. 274-83.

    Article  Google Scholar 

  27. P.S. Turner: J. Res. NBS, 1946, Vol.37, pp. 239-50.

    Google Scholar 

  28. E.H. Kerner: Proc. Phys. Soc. B, 1956, Vol. 69B, pp. 808-13.

    Article  Google Scholar 

  29. F.C. Nix and D. MacNair: Phys. Rev., 1941, Vol. 60, pp. 597-605.

    Article  Google Scholar 

  30. H. Ferkel: Nanostr. Mater., 1999, Vol. 11, pp. 595-602.

    Article  Google Scholar 

  31. A. Asfar and A. Simchi: Mater. Sci. Eng. A, 2009, Vol. 518A, pp. 41-6.

    Google Scholar 

  32. S.H. Liang and Z.K. Fan: Acta Metall. Sin., 1999, Vol. 12, pp. 782-6.

    Google Scholar 

  33. C. Langlois, M.J. Hÿtch, P. Langlois, S. Lartigue-Korinek and Y. Champion: Met. Mat. Trans. A, 2005, Vol. 36A, pp. 3451-60.

    Article  Google Scholar 

  34. R. Bimger and H. Gleiter: in Encyclopedia of Materials Science and Engineering, vol. 1 R.W. Cahn, ed., Pergamon Press, Oxford, 1988, p. 339.

  35. H.Y. Tong, J.T. Wang, B.Z. Ding, H.G. Jiang and K. Lu: J. Non-Cryst. Solids, 1992, Vol. 150, pp. 444-7.

    Article  Google Scholar 

  36. K. Lu, J.T. Wang and W.D. Wei: J. Appl. Phys., 1991, Vol. 69, pp. 522-4.

    Article  Google Scholar 

  37. I.B. Krynetskii, B.A. Gizhevskii, S.V. Naumov and E.A. Kozlov: Phys. Solids State, 2008, Vol. 50, pp. 756-8.

    Article  Google Scholar 

  38. H.J. Klam, H. Hahn and H. Gleiter: Acta Metall., 1987, Vol. 35, pp. 2101-4.

    Article  Google Scholar 

  39. M. Vetterli, R. Tavangar, L. Weber and A. Kelly: Scr. Mater., 2011, Vol. 64, pp. 153-6.

    Article  Google Scholar 

  40. L.H. Qian, S.C. Wang, Y.H. Zhao and K. Lu: Acta Mater., 2002, Vol. 50, pp. 3425-34.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a consortium of Finnish companies and the Graduate School on Advanced Materials and Processes of the Academy of Finland. Ms. Anu Keski-Honkola, Dr. Xuwen Liu, and Ms. Pirjo Korpiala are thanked for their help in the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riina Ritasalo.

Additional information

Manuscript submitted January 29, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritasalo, R., Kanerva, U., Ge, Y. et al. Mechanical and Thermal Properties of Pulsed Electric Current Sintered (PECS) Cu-Diamond Compacts. Metall Mater Trans B 45, 489–496 (2014). https://doi.org/10.1007/s11663-013-9895-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9895-8

Keywords

Navigation