Skip to main content
Log in

Phase Field Simulation of Binary Alloy Dendrite Growth Under Thermal- and Forced-Flow Fields: An Implementation of the Parallel–Multigrid Approach

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Dendrite growth and morphology evolution during solidification have been studied using a phase field model incorporating melt convection effects, which was solved using a robust and efficient parallel, multigrid computing approach. Single dendrite growth against the flow of the melt was studied under a wide range of growth parameters, including the Lewis number (Le) and the Prandtl number (Pr) that express the relative strengths of thermal diffusivity to solute diffusivity and kinematic viscosity to thermal diffusivity. Multidendrite growths for both columnar and equiaxed cases were investigated, and important physical aspects including solute recirculation, tip splitting, and dendrite tilting against convection have been captured and discussed. The robustness of the parallel–multigrid approach enabled the simulation of dendrite growth for metallic alloys with Le ~ 104 and Pr ~ 10−2, and the interplay between crystallographic anisotropy and local solid/liquid interfacial conditions due to convection on the tendency for tip splitting was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz and R. Trivedi, Acta Mater. 2009, vol. 57, pp. 941–71.

    Article  CAS  Google Scholar 

  2. W. J. Boettinger, J. A. Warren, C. Beckermann and A. Karma, Annu. Rev. Mater. Res. 2002, vol. 32, pp. 163–94.

    Article  CAS  Google Scholar 

  3. L.-Q. Chen, Annu. Rev. Mater. Res. 2002, vol. 32, pp. 113–40.

    Article  CAS  Google Scholar 

  4. L. Granasy, T. Pusztai and J. A. Warren (2004) J. Phys. Condens. Matter 16: R1205–R1235.

    Article  CAS  Google Scholar 

  5. T. Haxhimali, A. Karma, F. Gonzales and M. Rappaz, Nat Mater. 2006, vol. 5, pp. 660–64.

    Article  CAS  Google Scholar 

  6. N. Moelans, B. Blanpain and P. Wollants, CALPHAD 2008, vol. 32, pp. 268–94.

    Article  CAS  Google Scholar 

  7. A. Badillo, D. Ceynar and C. Beckermann, Journal of Crystal Growth 2007, vol. 309, pp. 216–24.

    Article  CAS  Google Scholar 

  8. C. Giummarra, J. C. LaCombe, M. B. Koss, J. E. Frei, A. O. Lupulescu and M. E. Glicksman, J. Cryst. Growth 2005, vol. 274, pp. 317–30.

    Article  CAS  Google Scholar 

  9. C. W. Lan, C. M. Hsu and C. C. Liu, J. Cryst. Growth 2002, vol. 241, pp. 379–86.

    Article  CAS  Google Scholar 

  10. C. W. Lan and C. J. Shih, J. Cryst. Growth 2004, vol. 264, pp. 472–82.

    Article  CAS  Google Scholar 

  11. A. Karma, Phys. Rev. Lett. 2001, vol. 87, p. 115701.

    Article  CAS  Google Scholar 

  12. J. C. Ramirez and C. Beckermann, Acta Mater. 2005, vol. 53, pp. 1721–36.

    Article  CAS  Google Scholar 

  13. J. C. Ramirez, C. Beckermann, A. Karma and H. J. Diepers, Phys. Rev. E 2004, vol. 69, p. 051607.

    Article  CAS  Google Scholar 

  14. C. Beckermann, H. J. Diepers, I. Steinbach, A. Karma and X. Tong, J. Comput. Phys. 1999, vol. 154, pp. 468–96.

    Article  CAS  Google Scholar 

  15. X. Tong, C. Beckermann, A. Karma and Q. Li, Phys. Rev. E 2001, vol. 63, p. 061601.

    Article  CAS  Google Scholar 

  16. D. M. Anderson, G. B. McFadden and A. A. Wheeler, Physica D 2000, vol. 135, pp. 175–94.

    Article  CAS  Google Scholar 

  17. D. M. Anderson, G. B. McFadden and A. A. Wheeler, Physica D 2001, vol. 151, pp. 305–31.

    Article  CAS  Google Scholar 

  18. R. Tönhardt and G. Amberg, J. Cryst. Growth 2000, vol. 213, pp. 161–87.

    Article  Google Scholar 

  19. C.W. Lan, C.J. Shih and M.H. Lee, Acta Mater. 2005, vol. 53, pp. 2285–94.

    Article  CAS  Google Scholar 

  20. R. Siquieri and H. Emmerich, Philos. Mag. 2011, vol. 91, pp. 45–73.

    Article  CAS  Google Scholar 

  21. Z. Guo, J. Mi and P. S. Grant, J. Comput. Phys. 2012, vol. 231, pp. 1781–96.

    Article  Google Scholar 

  22. L. Beltran-Sanchez and D. Stefanescu: Metall. Mater. Trans. A 2004, vol. 35A, pp. 2471–85.

    Article  CAS  Google Scholar 

  23. M. F. Zhu and D. M. Stefanescu, Acta Mater. 2007, vol. 55, pp. 1741–55.

    Article  CAS  Google Scholar 

  24. S.P. Vanka, J. Comput. Phys. 1986, vol. 65, pp. 138–58.

    Article  Google Scholar 

  25. U. Trottenberg, C. Oosterlee, and A. Schuller: Multigrid, Academic Press, London, U.K., 2001.

  26. A. Karma and W.-J. Rappel, Phys. Rev. E 1999, vol. 60, pp. 3614–25.

    Article  CAS  Google Scholar 

  27. L. Arnberg and R. Mathiesen (2007) JOM 59:20–26.

    Article  CAS  Google Scholar 

  28. D. Ruvalcaba, R. H. Mathiesen, D. G. Eskin, L. Arnberg and L. Katgerman, Acta Mater. 2007, vol. 55, pp. 4287–92.

    Article  CAS  Google Scholar 

  29. B. Utter, R. Ragnarsson and E. Bodenschatz, Phys. Rev. Lett. 2001, vol. 86, pp. 4604–07.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Natural Science Foundation of China (Project No. 51205229), the U.K. Royal Academy of Engineering/Royal Society through Newton International Fellowship Scheme, and the EPSRC Centre for Innovative Manufacture: Liquid Metal Engineering (EP/H026177/1) for financial support, and the Oxford Supercomputer Centre, and the National Laboratory for Information Science and Technology in Tsinghua University for granting access to the supercomputing facilities and support for the parallel programming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Guo.

Additional information

Manuscript submitted January 28, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Z., Mi, J., Xiong, S. et al. Phase Field Simulation of Binary Alloy Dendrite Growth Under Thermal- and Forced-Flow Fields: An Implementation of the Parallel–Multigrid Approach. Metall Mater Trans B 44, 924–937 (2013). https://doi.org/10.1007/s11663-013-9861-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9861-5

Keywords

Navigation