Skip to main content
Log in

A Numerical Study of the Direct-Chill Co-Casting of Aluminum Ingots via Fusion™ Technology

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

For the last 70 years, direct-chill (DC) casting has been the mainstay of the aluminum industry for the production of monolithic sheet and extruded products. Traditionally, clad aluminum sheet products have been made from separate core and clad DC cast ingots by an expensive roll-bonding process; however, in 2005, Novelis unveiled an innovative variant of the DC casting process called the Fusion™ Technology process that allows the production of multialloy ingots that can be rolled directly into laminated or clad sheet products. Of paramount importance for the successful commercialization of this new technology is a scientific and quantitative understanding of the Fusion™ casting process that will facilitate process optimization and aid in the future development of casting methodology for different alloy combinations and ingot and clad dimensions. In the current study, a numerical steady-state thermofluids model of the Fusion™ Technology casting process was developed and used to simulate the casting of rectangular bimetallic ingots made from the typical brazing sheet combination of AA3003 core clad with an AA4045 aluminum alloy. The analysis is followed by a parametric study of the process. The influence of casting speed and chill-bar height on the steady-state thermal field within the ingot is investigated. According to the criteria developed with the thermofluids model, the AA3003/AA4045 combination of aluminum alloys can be cast successfully with casting speeds up to 2.4 mm s−1. The quality of the metallurgical bond between the core and the clad is decreased for low casting speeds and chill-bar heights >35 mm. These results can be used as a guideline for improving the productivity of the Fusion™ Technology process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

C f :

Nucleate boiling coefficient

C p :

Specific heat (J kg−1 K−1)

H :

Enthalpy (J kg−1)

K 0 :

Permeability factor (m2)

L 0 :

Ingot length scale (m)

S :

Source terms

S buoy :

Buoyancy term (N m−3)

S mush :

Mushy zone term (W m−3)

S sol :

Solidification term (N m−3)

T :

Temperature (K)

W :

Ingot width (m)

f s :

Fraction solid

g :

Gravitational acceleration (m s−2)

h :

Heat-transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

p :

Pressure (N m−2)

q :

Heat flux (W m−2)

u :

Velocity (m s−1)

u s :

Casting speed (m s−1)

x :

Spatial coordinate (m)

Γ :

Volumetric water flow rate per unit of perimeter (m2 s−1)

α :

Thermal diffusivity (m2 s−1)

β :

Thermal expansion coefficient (K−1)

δ :

Air gap thickness (m)

λ sl :

Latent heat of fusion (J kg−1)

λ wv :

Latent heat of evaporation (J kg−1)

μ :

Dynamic viscosity (kg m−1 s−1)

ρ :

Density (kg m−3)

σ :

Surface tension (N m−1)

CB:

Chill bar

ONB:

Onset of nucleate boiling

PC:

Primary cooling

SC:

Secondary cooling

boil:

Nucleate boiling

coh:

Coherency

conv:

Forced convection

gap:

Air gap

inlet:

Molten metal inlet

l:

Liquid phase

liq:

Liquidus

lub:

Lubricating film

mold:

Direct-chill mold

ref:

Reference

s:

Solid phase

sat:

Water saturation

sol:

Solidus

surf:

Ingot surface

v:

Water vapor

w:

Cooling water

wall:

Mold wall

References

  1. J.R. Davis: Corrosion of Aluminum and Aluminum Alloys, ASM International, Materials Park, OH, 1999, pp. 75-84.

    Google Scholar 

  2. S. Kalpakjian and S.R. Schmid: Manufacturing Processes for Engineering Materials, 5th ed., Pearson Education, Upper Saddle River, NJ, 2008, pp. 760-61.

    Google Scholar 

  3. M. Kutsuna: ASM Handbook, Vol. 6A, ASM International, Materials Park, OH, 2011, pp. 717-72.

    Google Scholar 

  4. M. Eizadjou, H. DaneshManesh, and K. Janghorban: Materials and Design, 2008, vol. 29, pp. 909–13.

    Article  CAS  Google Scholar 

  5. R. Jamaati and M.R. Toroghinejad: J. Materials Engineering and Performance, 2011, Vol. 20, pp. 191–97.

    Article  CAS  Google Scholar 

  6. M.D. Anderson, K.T. Kubo, T.F. Bischoff, W.J. Fenton, E.W. Reeves, B. Spendlove, and R.B. Wagstaff: U.S. Patent No. 7472740, 2005.

  7. R.B. Wagstaff, D.J. Lloyd, and T.F. Bischoff: Materials Science Forum, 2006, Vol. 519-21, pp. 1809–14.

    Article  Google Scholar 

  8. A. Gupta, S.T. Lee, and R.B. Wagstaff: Materials Technology, 2007, Vol. 22, pp. 71–75.

    CAS  Google Scholar 

  9. R.B. Wagstaff, T.F. Bischoff, and D. Sinden: Materials Science Forum, 2010, Vol. 630, pp. 175–78.

    Article  CAS  Google Scholar 

  10. D.G. Eskin: Physical Metallurgy of Direct Chill Casting of Aluminum Alloys, CRC Press, Boca Raton, FL, 2008, pp. 1-17.

    Google Scholar 

  11. A.R. Baserinia, H. Ng, M.A. Wells, D.C. Weckman, S. Barker, M. Gallerneault: Metall. Mater. Trans. B, 2012, Vol. 43B, pp. 887–901.

    Article  Google Scholar 

  12. W.D. Bennon and F.P. Incropera: Int. J. Heat Mass Transfer, 1987, Vol. 30, pp. 2161-70.

    Article  CAS  Google Scholar 

  13. C.J. Vreeman, J.D. Schloz, and M.J.M. Krane: J. Heat Transfer, 2002, Vol. 124, pp. 947–54.

    Article  CAS  Google Scholar 

  14. A.G. Gerber: Int. J. Heat Mass Transfer, 2005, Vol. 48, pp. 2722–34.

    Article  CAS  Google Scholar 

  15. Q. Du, D.G. Eskin, and L. Katgerman: Metall. Mater. Trans. A, 2007, Vol. 38A, pp. 180–89.

    Article  CAS  Google Scholar 

  16. J.M. Reese: Metall. Mater. Trans. B, 1997, Vol. 28B, pp. 491–99.

    Article  CAS  Google Scholar 

  17. ANSYS®; CFX®: Version 12.1, ANSYS Europe Ltd, 1996–2009.

  18. T. Loulou, E.A. Artyukhin, and J.P. Bardon: Int. J. Heat Mass Transfer, 1999, Vol. 42, pp. 2129–42.

    Article  CAS  Google Scholar 

  19. W.H. McAdams: Heat Transmission, McGraw-Hill Book Co, New York, NY, 1954, pp. 244-45.

    Google Scholar 

  20. D.C. Weckman and P. Niessen: Metall. Trans. B, 1982, Vol. 13B, pp. 593–601.

    Article  CAS  Google Scholar 

  21. W.M. Rohsenow and J.P. Harnett: Handbook of Heat Transfer, McGraw-Hill Book Co, New York, NY, 1973, pp. 133-1374.

    Google Scholar 

  22. I.L. Pioro: Int. J. Heat Mass Transfer, 1999, Vol. 42, pp. 2003–13.

    Article  CAS  Google Scholar 

  23. FactSage™: Ver. 6.1, Thermfact (Montreal, Canada) and GTT-Technologies (Aachen, Germany), 1976–2007.

  24. A. Stangeland, A. Mo, O. Nielsen, D. Eskin, and M. M’Hamdi: Metall. Mater. Trans. A, 2004, Vol. 35A, pp. 2903–15.

    Article  CAS  Google Scholar 

  25. M.G. Pokorny, C.A. Monroe, C. Beckermann, Z. Zhen, and N. Hort: Metall. Trans. A, 2010, Vol. 41A, pp. 3196–3207.

    Article  Google Scholar 

  26. K.C. Mills: Recommended Values of Thermophysical Properties for Selected Commercial Alloys, ASM International, Materials Park, OH, 2002, pp. 37-42.

    Book  Google Scholar 

  27. Y.S. Touloukian: Thermophysical Properties of Matter, Plenum Publishing Corp., New York, NY, 1970.

    Google Scholar 

  28. J.W. Bray: ASM Handbook, Vol 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Materials Park, OH, 1990, pp. 29-61.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), Novelis Global Technology Centre (NGTC), Ontario Centres of Excellence (OCE), and Emerging Materials Knowledge (EMK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne J. F. R. Caron.

Additional information

Manuscript submitted December 19, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baserinia, A.R., Caron, E.J.F.R., Wells, M.A. et al. A Numerical Study of the Direct-Chill Co-Casting of Aluminum Ingots via Fusion™ Technology. Metall Mater Trans B 44, 1017–1029 (2013). https://doi.org/10.1007/s11663-013-9859-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9859-z

Keywords

Navigation