Skip to main content
Log in

Leaching of Chalcopyrite Concentrate with Hydrogen Peroxide and Sulfuric Acid in an Autoclave System

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, leaching of chalcopyrite concentrate was investigated in an autoclave system using hydrogen peroxide and sulfuric acid. By decomposition of hydrogen peroxide, the active oxygen formed can provide both high oxidation potential and high pressure in a closed vessel for leaching. Preliminary studies showed that hydrogen peroxide can be used as an oxidant instead of oxygen gas in the autoclave. Central composite design (CCD) was used to examine the effects of the experimental parameters on the copper and iron extraction as a response. The proposed model equation using CCD showed good agreement with experimental data, the correlation coefficients R 2 for copper and iron being 0.84 and 0.86, respectively. The optimum conditions to obtain the main goal of maximum copper and minimum iron extraction from chalcopyrite were determined as to be sulfuric acid concentration of 2.5 M, hydrogen peroxide concentration of 2.3 M, leaching time of 24 minutes, chalcopyrite amount of 3.17 g (in 50-mL solution), stirring speed of 630 rpm, and leaching temperature of 351 K (78 °C). Under the optimum condition, 76 pct of copper and 9 pct of iron were extracted from chalcopyrite concentrate. Extraction yield results of metals indicate that selective leaching of chalcopyrite can be achieved using hydrogen peroxide and sulfuric acid in an autoclave system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.G. Davenport, M. King, M. Schlesinger, and A.K. Biswas: Extractive Metallurgy of Copper, 4th edition, Pergamon, New York, 2002.

    Google Scholar 

  2. M.M. Antonijević, Z.D. Jankovic, and M.D. Dimitrijevic: Hydrometallurgy, 2004, vol. 71, pp. 329-34.

    Article  Google Scholar 

  3. T. Qiu, G. Nie, J. Wang, and L. Cui: Trans. Nonferrous Met. Soc. China, 2007, vol. 17, pp. 418-22.

    Article  CAS  Google Scholar 

  4. M.A. Harahsheh, S. Kingman, and A.A. Harahsheh: Hydrometallurgy, 2008, vol. 91, pp. 89-97.

    Article  Google Scholar 

  5. N. Hiroyoshi, H. Miki, T. Hirajima, and M. Tsunekawa: Hydrometallurgy, 2001, vol. 60, pp. 185-97.

    Article  CAS  Google Scholar 

  6. E.M. Cordoba, J.A. Munoz, M.L. Blazquez, F. Gonzalez, and A. Ballester: Hydrometallurgy, 2008, vol. 93, pp. 88-96.

    Article  CAS  Google Scholar 

  7. E.M. Cordoba, J.A. Munoz, M.L. Blazquez, F. Gonzalez, and A. Ballester: Hydrometallurgy, 2008, vol. 93, pp. 97-105.

    Article  CAS  Google Scholar 

  8. F. Carranza, N. Iglesias, A. Mazuelos, I. Palencia, and R. Romero: Hydrometallurgy, 2004, vol. 71, pp. 413-20.

    Article  CAS  Google Scholar 

  9. Z.Y. Lu, M.I. Jeffrey, and F. Lawson: Hydrometallurgy, 2000, vol. 56, pp. 189-202.

    Article  CAS  Google Scholar 

  10. R.G. McDonald, and D.M. Muir: Hydrometallurgy, 2007, vol. 86, pp. 191-205.

    Article  CAS  Google Scholar 

  11. R.G. McDonald, and D.M. Muir: Hydrometallurgy, 2007, vol. 86, pp. 206-220.

    Article  CAS  Google Scholar 

  12. S. Aydoğan, G. Ucar, and M. Canbazoglu: Hydrometallurgy, 2006, vol. 81, pp. 45-51.

    Article  Google Scholar 

  13. T. Dong, Y. Hua, Q. Zhang, and D. Zhou: Hydrometallurgy, 2009, vol. 99, pp. 33-38.

    Article  CAS  Google Scholar 

  14. M. Chakravorty, and S. Srikanth: Thermochim. Acta, 2000, vol. 362, pp. 25-35.

    Article  Google Scholar 

  15. A. Akçıl: Miner. Eng., 2002, vol. 15, pp. 1193-97.

    Article  Google Scholar 

  16. T. Tamagawa, S.H. Tabaian, N.X. Fu, M. Kobayashi, and I. Iwasaki: Miner. Metall. Proc., 2000, vol. 17, pp. 259-63.

    CAS  Google Scholar 

  17. R. Padilla, E. Olivares, M.C. Ruiz, and H.Y. Sohn: Metall. Mater. Trans. B., 2003, vol. 34B, pp. 61-68.

    Article  CAS  Google Scholar 

  18. R. Padilla, M. Rodriguez, and M.C. Ruiz: Metall. Mater. Trans. B., 2003, vol. 34B, pp. 15-23.

    Article  CAS  Google Scholar 

  19. N. Kanari, I. Gaballah, E. Allain, and N. Menad: Metall. Mater. Trans. B., 1999, vol. 30B, pp. 567-76.

    Article  CAS  Google Scholar 

  20. R. Padilla, P. Pavez, and M.C. Ruiz: Hydrometallurgy, 2008, vol. 91, pp. 113-20.

    Article  CAS  Google Scholar 

  21. J. Petersen, and D.G. Dixon: Miner. Eng., 2002, vol. 15, pp. 777-85.

    Article  CAS  Google Scholar 

  22. A. Rubio, and F.J. Garcia Frutos: Miner. Eng., 2002, vol. 15, pp. 689-94.

    Article  CAS  Google Scholar 

  23. Y. Konishi, M. Tokushige, S. Asai, and T. Suzuki: Hydrometallurgy, 2001, vol. 59, pp. 271-82.

    Article  CAS  Google Scholar 

  24. M.B. Stott, H.R. Watling, P.D. Franzmann, and D.Sutton: Miner. Eng., 2000, vol. 13, pp. 1117-27.

    Article  CAS  Google Scholar 

  25. M.N. Babu, K.K. Sahu, and B.D. Pandey: Hydrometallurgy, 2002, vol. 64, pp. 119-29.

    Article  CAS  Google Scholar 

  26. V. Mahajan, M. Misra, K. Zhong, and M.C. Fuerstenau: Minerals Engineering, 2007, vol. 20, pp. 670-74.

    Article  CAS  Google Scholar 

  27. S. Aydoğan: Chem. Eng. J., 2006, vol. 123, pp. 65-70.

    Article  Google Scholar 

  28. T. Pecina, T. Franco, P. Castillo, and E. Orrantia: Miner. Eng., 2008, vol. 21, pp. 23-30.

    Article  CAS  Google Scholar 

  29. M.M. Antonijevic, M. Dimitrijevic, and Z. Jankovic: Hydrometallurgy, 1997, vol. 46, pp. 71-83.

    Article  CAS  Google Scholar 

  30. F. Habashi: Kinetics of Metallurgical Processes, Laval University, Quėbec, 1999.

    Google Scholar 

  31. S. Aydoğan, A. Aras, G. Uçar, and M. Erdemoğlu: Hydrometallurgy, 2007, vol. 89, pp. 189-95.

    Article  Google Scholar 

  32. A.I. Vogel: Vogel’s Textbook of Quantitative Chemical Analysis, 5th ed., Longman, London, ISBN:0-582-44693-7, 1989.

  33. D.C. Montgomery: Design and Analysis of Experiments, 5th ed., Wiley, Hoboken, NJ, ISBN 0-471-31649-0, 2001.

Download references

Acknowledgments

This study was supported by the TUBITAK (Scientific and Technological Research Council of Turkey) under the Project No: 106M177. The authors wish to express their thanks to chemical engineer Hasan Arslanoğlu for his help in conducting the experiments. The authors are also thankful to Prof. Dr. Murat Erdemoğlu and mining engineer Hakan Derin for help in the SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Deniz Turan.

Additional information

Manuscript submitted July 27, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turan, M.D., Altundoğan, H.S. Leaching of Chalcopyrite Concentrate with Hydrogen Peroxide and Sulfuric Acid in an Autoclave System. Metall Mater Trans B 44, 809–819 (2013). https://doi.org/10.1007/s11663-013-9858-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9858-0

Keywords

Navigation