Skip to main content
Log in

Estimation of Cooling Rates During Close-Coupled Gas Atomization Using Secondary Dendrite Arm Spacing Measurement

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Al-4 wt pct Cu alloy has been gas atomized using a commercial close-coupled gas-atomization system. The resulting metal powders have been sieved into six size fractions, and the SDAS has been determined using electron microscopy. Cooling rates for the powders have been estimated using a range of published conversion factors for Al-Cu alloy, with reasonable agreement being found between sources. We find that cooling rates are very low relative to those often quoted for gas-atomized powders, of the order of 104 K s−1 for sub-38 µm powders. We believe that a number of numerical studies of gas atomization have overestimated the cooling rate during solidification, probably as a consequence of overestimating the differential velocity between the gas and the particles. From the cooling rates measured in the current study, we estimate that such velocities are unlikely to exceed 20 m s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Li, X. Liang, J.C. Earthman and E.J. Lavernia: Acta Mater., 1996, vol. 44, pp. 2409–2420.

    Article  CAS  Google Scholar 

  2. M. Kearns: Mater. Sci. Eng. A, 2007, vol. 375-377, pp. 120-126.

    Google Scholar 

  3. O.P. Pandey, N.S. Mishra, C. Ramachandra, S. Lele and S.N. Ojha: Metall. Mater. Trans. A, 1994, vol. 25, pp. 2517-2523.

    CAS  Google Scholar 

  4. N. Zeoli, S. Gu and S. Kamnis: Int. J. Heat. Mass. Transf., 2008, vol. 51, pp. 4121–4131.

    Article  CAS  Google Scholar 

  5. P. Shukla, R.K. Mandal and S.N. Ojha: Bull. Mater. Sci., 2001, vol. 24, pp. 547–554.

    Article  CAS  Google Scholar 

  6. S. He, Y. Liu, and S Guo: Rare Met. Mater. Eng., 2009, vol. 38, pp. 353–56.

  7. J. Kellie: in Cooling Rate and Structure of Commercial Aluminium Alloys in Solidification and Casting, K. O’Reilly and B. Cantor, eds., Taylor & Francis, London, 2002, pp. 271–85.

  8. J. Szekely and N.J. Themelis: Rate phenomena in process metallurgy, 1972, Wiley Interscience, New York.

    Google Scholar 

  9. T.Z. Kattamis, J.C. Coughin, and M.C. Flemings: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 1504.

  10. K.P. Young and D.H. Kirkwood: Metall. Trans. A, 1975, vol. 6, pp. 197-205.

    CAS  Google Scholar 

  11. D.H. Kirkwood: Mater. Sci. Engng, 1985, vol. 73, pp. L1-L4.

    Article  CAS  Google Scholar 

  12. A.M. Mullis: Acta Mater., 1998, vol. 46, pp. 4609-4615.

    Article  CAS  Google Scholar 

  13. T.F. Bower, H.D. Brody, and M.C. Flemings: Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 624.

  14. J.A. Horwath and L.F. Mondolfo: Acta Metall., 1962, vol. 10, pp. 1037-1043.

    Article  CAS  Google Scholar 

  15. J.A. Sarreal and G.J. Abbaschian: Metall. Trans. A, 1986, vol. 17A, 2063–73.

  16. M.A. Talamantes-Silva, A. Rodríguez, J. Talamantes-Silva, S. Valtierra and R. Colás: Mater Charact., 2008, vol. 59, pp. 1434–1439.

    Article  CAS  Google Scholar 

  17. D. Eskin, Q. Du, D. Ruvalcaba and L. Katgerman: Mater. Sci. Eng. A, 2005, vol. 405, pp. 1–10.

    Article  Google Scholar 

  18. G. Kasperovich, T. Volkman, L. Ratke and D. Herlach: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1183-1191.

    Article  CAS  Google Scholar 

  19. V. Anand, A.J. Kaufman, and N.J. Grant: in Rapid Solidification Processing, Principles & Technologies II, R. Mehrabian, B.H. Kear, and M. Cohen, eds., Claitor, Baton Rouge, 1978, pp. 273–86.

  20. I.E. Anderson, R.S. Figliola and H. Morton: Mater. Sci. Eng. A, 1991, vol. 148, pp. 101-114.

    Article  Google Scholar 

  21. J. Alkemper, S. Sous, C. Stocker, and L. Ratke: J. Cryst. Growth, 1998, vol. 191, pp. 252–60.

    Article  CAS  Google Scholar 

  22. J. Ting, J. Connor and S. Ridder: Mater. Sci. Eng. A, 2005, vol. 390, pp. 452.

    Article  Google Scholar 

  23. A.M. Mullis, N.J. Adkins, Z. Aslam, I.N. McCarthy and R.F. Cochrane: Int. J. of Powder Metall., 2008, vol. 44, pp. 55-64.

    CAS  Google Scholar 

  24. A.M. Mullis, I.N. McCarthy and R.F. Cochrane: J. Mater. Process. Technol., 2011, vol. 211, pp. 1471-1477.

    Article  CAS  Google Scholar 

  25. R.P. Underhill, P.S. Grant, B. Cantor and D.J. Bryant: Int. J. Nonequilib. Process., 1997, vol. 10, pp. 201–216.

    CAS  Google Scholar 

  26. D. Bergmann, U. Fritsching and K. Bauckhage: Int. J. Therm. Sci., 2000, vol. 39, pp. 53–62.

    Article  CAS  Google Scholar 

  27. M.M. Tong and D.J. Browne: J. Mater. Process. Tech., 2008, vol. 202, pp. 419–427.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Mullis.

Additional information

Manuscript submitted February 1, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullis, A.M., Farrell, L., Cochrane, R.F. et al. Estimation of Cooling Rates During Close-Coupled Gas Atomization Using Secondary Dendrite Arm Spacing Measurement. Metall Mater Trans B 44, 992–999 (2013). https://doi.org/10.1007/s11663-013-9856-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9856-2

Keywords

Navigation