Skip to main content
Log in

Effect of Annealing on Properties of Carbonaceous Materials. Part II: Porosity and Pore Geometry

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The pore structure of carbonaceous materials was studied using image analysis. The effect of annealing on the porosity and pore geometry of cokes, chars, and pyrolyzed coals (laboratory chars) was examined in the temperature range of 973 K to 1773 K (700 °C to 1500 °C). The porosity of chars and pyrolyzed coals significantly increased during annealing at temperatures below 1373 K (1100 °C) due to volatile matter release. Further increasing of the annealing temperature from 1373 K to 1773 K (1100 °C to 1500 °C) caused marginal porosity evolution. The porosity of cokes was not affected by annealing at temperatures below 1573 K (1300 °C) and slightly increased in the temperature range 1573 to 1773 K (1300 °C to 1500 °C). The increase in the porosity of chars and pyrolyzed coals during annealing at temperatures 1373 K to 1773 K (1100 °C to 1500 °C), and cokes at 1573 K to 1773 K (1300 °C to 1500 °C), was a result of reactions with oxides of their mineral phases. Annealing had a marginal effect on the pore shape (Feret ratio) of carbonaceous materials, but enlarged the pore size of chars and pyrolyzed coals and decreased their pore density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.W. Patrick and A. Walker: Carbon, 1989, vol. 27, no. 1, pp. 117-123.

    Article  Google Scholar 

  2. M.G.K. Grant, A.C.D. Chaklader, and J.T. Price: Fuel, 1991, vol. 70, no. 2, pp. 181-188.

    Article  CAS  Google Scholar 

  3. H. Sato, J.W. Patrick, and A. Walker: Fuel, 1998, vol. 77, no. 11, pp. 1203-1208.

    Article  CAS  Google Scholar 

  4. Y. Kubota, S. Nomura, T. Arima, and K. Kato: ISIJ Int., 2011, vol. 51, no. 11, pp. 1800-1808.

    Article  CAS  Google Scholar 

  5. D. Hays, J.W. Patrick, and A. Walker: Fuel, 1976, vol. 55, no. 4, pp. 297-302.

    Article  CAS  Google Scholar 

  6. J. Tomeczek and S. Gil: Fuel, 2003, vol. 82, no. 3, pp. 285-292.

    Article  CAS  Google Scholar 

  7. P.K. Singla, S. Miura, R.R. Hudgins, and P.L. Silveston: Fuel, 1983, vol. 62, no. 6, pp. 645-648.

    Article  CAS  Google Scholar 

  8. O. Senneca, P. Salatino, and S. Masi: Fuel, 1998, vol. 77, no. 13, pp. 1483-1493.

    Article  CAS  Google Scholar 

  9. V. Gomez-Serrano, J. Pastor-Villegas, C.J. Duran-Valle, and C. Valenzuela-Calahorro: Carbon, 1996, vol. 34, no. 4, pp. 533-538.

    Article  CAS  Google Scholar 

  10. J. Pastor-Villegas, C. Valenzuela-Calahorro, A. Bernalte-Garcia, and V. Gomez-Serrano: Carbon, 1993, vol. 31, no. 7, pp. 1061-1069.

    Article  CAS  Google Scholar 

  11. S.Y. Lin, M. Hirato, and M. Horio: Energy Fuels, 1994, vol. 8, no. 3, pp. 598-606.

    Article  CAS  Google Scholar 

  12. J.W. Patrick and A.E. Stacey: Fuel, 1975, vol. 54, no. 4, pp. 256-264.

    Article  CAS  Google Scholar 

  13. J.W. Patrick, M.J. Sims, and A.E. Stacey: J. Microsc., 1977, vol. 109, no. 1, pp. 137-143.

    Article  Google Scholar 

  14. J.W. Patrick, M.J. Sims, and A.E. Stacey: J. Phys. D: Appl. Phys., 1980, vol. 13, no. 6, pp. 937-951.

    Article  CAS  Google Scholar 

  15. X. Xing: Ph.D. Thesis, School of Material Science and Engineering, University of New South Wales, 2012, pp. 71–86.

  16. N. Andriopoulos, C.E. Loo, R. Dukino, and S.J. McGuire: ISIJ Int., 2003, vol. 43, no. 10, pp. 1528-1537.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by Tasmanian Electrometallurgical Company and the Australian Research Council (ARC Linkage Project LP 098493). Pyrolyzed coal samples were prepared at the CSIRO Energy Centre, Newcastle, Australia. The proximate, ultimate, and petrographic analyses were completed by Sinosteel Anshan Research Institute of Thermo-energy Co., Ltd., China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Xing.

Additional information

Manuscript submitted February 14, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, X., Zhang, G., Dell’Amico, M. et al. Effect of Annealing on Properties of Carbonaceous Materials. Part II: Porosity and Pore Geometry. Metall Mater Trans B 44, 862–869 (2013). https://doi.org/10.1007/s11663-013-9854-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9854-4

Keywords

Navigation